On the Unified Class of functions of Complex Order involving Dziok–Srivastava Operator

T.N. Shanmugam, S. Sivasubramanian, G. Murugusundaramoorthy

Abstract

In the present investigation, we consider an unified class of functions of complex order. We obtain a necessary and sufficient condition for functions in these classes.

2000 Mathematical Subject Classification: 30C45, 30C55, 30C80
Key words: Starlike functions of complex order, convex functions of complex order, subordination

1 Introduction

Let \(\mathcal{A} \) be the class of all analytic functions

\[
 f(z) = z + a_2 z^2 + a_3 z^3 + \cdots
\]

in the open unit disk \(\Delta = \{z \in \mathbb{C} : |z| < 1\} \). A function \(f \in \mathcal{A} \) is subordinate to an univalent function \(g \in \mathcal{A} \), written \(f(z) \prec g(z) \), if \(f(0) = g(0) \) and \(f(\Delta) \subseteq g(\Delta) \). Let \(\Omega \) be the family of analytic functions \(\omega(z) \) in the...
unit disc Δ satisfying the conditions $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in \Delta$. Note that $f(z) \prec g(z)$ if there is a function $w(z) \in \Omega$ such that $f(z) = g(\omega(z))$.

Let S be the subclass of A consisting of univalent functions. The class $S^*(\phi)$, introduced and studied by Ma and Minda [10], consists of functions in $f \in S$ for which

$$\frac{zf'(z)}{f(z)} \prec \phi(z), \quad (z \in \Delta).$$

The functions $h_{\phi_n} (n = 2, 3, \ldots)$ by

$$\frac{zh'_{\phi_n}(z)}{h_{\phi_n}(z)} = \phi(z^{n-1}), \quad h_{\phi_n}(0) = h'_{\phi_n}(0) - 1.$$

We write h_{ϕ^2} simply as h_{ϕ}. The functions h_{ϕ_n} are all functions in $S^*(\phi)$.

Recently, Ravichandran et al. [14] defined classes related to the class of starlike functions of complex order defined as

Definition 1.1. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0) = 1$, $\phi'(0) > 0$ which maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Then the class $S^*_b(\phi)$ consists of all analytic functions $f \in A$ satisfying

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \phi(z).$$

The class $C_b(\phi)$ consists of functions $f \in A$ satisfying

$$1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \prec \phi(z).$$

Following the work of Ma and Minda [10], Shanmugam and Sivasubramanian [19] obtained Fekete-Szegö inequality for the more general class $M_\alpha(\phi)$, defined by

$$\frac{\alpha z^2 f''(z) + zf'(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} \prec \phi(z),$$
where $\phi(z)$ satisfies the condition mentioned in Definition 1.1.

For any two analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, the Hadamard product or convolution of $f(z)$ and $g(z)$, written as $(f * g)(z)$ is defined by

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

For complex parameters $\alpha_1, \alpha_2, ..., \alpha_q$ and $\beta_1, \beta_2, ..., \beta_s$ with $(\beta_j \neq 0, -1, -2, ..., j = 1, 2, ..., s)$, we define the generalized hypergeometric function $qF_s(z)$ by

$$qF_s(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z) = \sum_{n=0}^{\infty} \frac{(\alpha_1)_n (\alpha_2)_n ... (\alpha_q)_n}{(\beta_1)_n (\beta_2)_n ... (\beta_s)_n (1)_n} z^n \quad (q \leq s + 1; q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; z \in \mathbb{U})$$

where $(\lambda)_n$ is the Pochhammer symbol defined by

$$(\lambda)_n = \begin{cases} 1 & \text{for } n = 0 \\ \lambda (\lambda + 1) ... (\lambda + n - 1) & \text{for } n = 1, 2, 3, ... \end{cases}.$$

Corresponding to a function $h_p(\alpha_1, \alpha_2, ... \alpha_q; \beta_1, \beta_2, ... \beta_s; z)$ defined by

$$h(\alpha_1, \alpha_2, ... \alpha_q; \beta_1, \beta_2, ... \beta_s; z) = z qF_s(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z),$$

we consider the Dziok–Srivastava operator $H(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s) f(z) : \mathcal{A} \rightarrow \mathcal{A}$, defined by the convolution

$$H(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s) f(z) = h(\alpha_1, \alpha_2, ... \alpha_q; \beta_1, \beta_2, ... \beta_s; z) * f(z).$$

We observe that, for a function f of the form (1.1), we have

$$H(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s) f(z) = z + \sum_{n=k}^{\infty} \Gamma_n a_n z^n$$
where

\[\Gamma_n = \frac{(\alpha_1)_{n-1}(\alpha_2)_{n-1}, \ldots, (\alpha_q)_{n-1}}{(\beta_1)_{n-1}(\beta_2)_{n-1}, \ldots, (\beta_s)_{n-1}(1)_{n-1}}. \]

For convenience, we write

\[H(\alpha_1, \alpha_2, \ldots, \alpha_q; \beta_1, \beta_2, \ldots, \beta_s) := H_{q,s}(\alpha_1) \]

Thus, through a simple calculations, we obtain

\[z (H_{q,s}(\alpha_1)f(z))' = \alpha_1 H_{q,s}(\alpha_1 + 1)f(z) - (\alpha_1 - 1)H_{q,s}(\alpha_1)f(z). \]

The Dziok–Srivastava operator \(H(\alpha_1, \alpha_2, \ldots, \alpha_q; \beta_1, \beta_2, \ldots, \beta_s) \) includes various other linear operators which were considered in earlier works in the literature. For \(s = 1 \) and \(q = 2 \), we obtain the linear operator:

\[\mathcal{F}(\alpha_1, \alpha_2; \beta_1)f(z) = H(\alpha_1, \alpha_2; \beta_1)f(z), \]

which was introduced by Hohlov [6]. Moreover, putting \(\alpha_2 = 1 \), we obtain the Carlson-Shaffer operator [1]:

\[\mathcal{L}(\alpha_1, \beta_1)f(z) = H(\alpha_1, 1; \beta_1)f(z). \]

Ruscheweyh [16] introduced an operator

\[D^m f(z) = \frac{z}{(1 - z)^m} * f(z) \quad (m \geq -1; f \in A). \]

From the equation (1.7), we have

\[D^\lambda f(z) = H(\lambda + 1, 1; 1)f(z). \]

In this, we introduce a more general class of complex order

\[M_{q,s,b,\alpha}(\phi) = M_{\alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_s, b, \alpha}(\phi) \]

which we define below.

Definition 1.2. Let \(b \neq 0 \) be a complex number. Let \(\phi(z) \) be an analytic function with positive real part on \(\Delta \) with \(\phi(0) = 1, \phi'(0) > 0 \) which maps
the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Then the class $M_{q,s,b,\alpha}(\phi)$ consists of all analytic functions $f \in A$ satisfying

$$1 + \frac{1}{b} (\Psi(q,s,z) - 1) < \phi(z), \quad (\alpha \geq 0).$$

where

$$\Psi_{q,s}(\alpha_1)f(z) := \Psi(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)f :=$$

$$\frac{\alpha(\alpha_1 + 1)H(\alpha_1 + 2)f(z) + (1 - 2\alpha_1\alpha)H(\alpha_1 + 1)f(z) - (1 - \alpha)(\alpha_1 - 1)H(\alpha_1)f(z)f(z)}{(1 - \alpha)H(\alpha_1)f(z)f(z) + \alpha H(\alpha_1 + 1)f(z)}.$$

We also denote,

(i) For $q = 2$ and $s = 1$, $M_{q,s,b,\alpha}(\phi) \equiv F(b, \alpha)(\phi)$.

(ii) For $q = 2$, $s = 1$ and $\alpha_2 = 1$, $M_{q,s,b,\alpha}(\phi) \equiv M(\alpha_1, \beta_1, b, \alpha)(\phi)$.

(iii) For $q = 2$, $s = 1$, $\alpha_1 = 1 + m$, $\alpha_2 = 1$ and $\beta_1 = 1$, $M_{q,s,b,\alpha}(\phi) \equiv M(m, b, \alpha)(\phi)$.

Clearly, for $q = s = 1$, $\alpha_1 = \beta_1 = 1$,

$$M_{1,1,b,0}(\phi) \equiv S^*_b(\phi) \quad \text{and} \quad M_{1,1,b,1}(\phi) \equiv C_b(\phi).$$

Motivated essentially by the aforementioned works, we obtain certain necessary and sufficient conditions for the unified class of functions $M_{q,s,b,\alpha}(\phi)$ which we have defined. The motivation of this paper is to generalize the results obtained by Ravichandran et al. [14] and also Srivastava and Lashin [20].

Our results includes several known results. To see this, let $M_{1,1,b,1}(A, B) \equiv S^*(A, B, b)$ and $M_{1,1,b,1}(A, B) \equiv C(A, B, b)$ ($b \neq 0$, complex) denote the classes $S^*_b(\phi)$ and $C_b(\phi)$ respectively when

$$\phi(z) = \frac{1 + Az}{1 + Bz} \quad (-1 \leq B < A \leq 1).$$

The class $S^*(A, B, b)$ and therefore the class $S^*_b(\phi)$ specialize to several well-known classes of univalent functions for suitable choices of A, B and b. The class $S^*(A, B, 1)$ is denoted by $S^*(A, B)$. Some of these classes are listed below where $ST(b)$ denotes $1 + \frac{1}{b}(\frac{zf(z)}{f(z)} - 1)$.
1. $S^{*}(1,-1,1)$ is the class S^{*} of starlike functions $[5,2,13]$.

2. $S^{*}(1,-1,b)$ is the class of starlike functions of complex order introduced by Wiatrowski [21]. We denote this class by S_{b}^{*}.

3. $S^{*}(1,-1,1-\beta), 0 \leq \beta < 1,$ is the class $S^{*}(\beta)$ of starlike functions of order β. This class was introduced by Robertson [15].

4. $S^{*}(1,0,b)$ is the set defined by $|ST(b) - 1| < 1$.

5. $S^{*}(\beta,0,b)$ is the set defined by $|ST(b) - 1| < \beta, 0 \leq \beta < 1$.

6. $S^{*}(\beta,-\beta,b)$ is the set defined by $\left| \frac{ST(b) - 1}{ST(b) + 1} \right| < \beta, 0 \leq \beta < 1$.

To prove our main result, we need the following results.

The following result follows a result of Ruscheweyh [16] for functions in the class $S^{*}(\phi)$ (see Ruscheweyh [17] Theorem 2.37, pages 86–88).

Lemma 1.1. Let ϕ be a convex function defined on Δ, $\phi(0) = 1$. Define $F(z)$ by

\begin{equation}
F(z) = z \exp \left(\int_{0}^{z} \frac{\phi(x) - 1}{x} \, dx \right).
\end{equation}

Let $q(z) = 1 + c_{1}z + \cdots$ be analytic in Δ. Then

\begin{equation}
1 + \frac{zq'(z)}{q(z)} \prec \phi(z)
\end{equation}

if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

\begin{equation}
\frac{q(tz)}{q(sz)} \prec \frac{sF(tz)}{tF(sz)}.
\end{equation}

Lemma 1.2. [11] Corollary 3.4h.1, p.135] Let $q(z)$ be univalent in Δ and let $\varphi(z)$ be analytic in a domain containing $q(\Delta)$. If $zq'(z)/\varphi(q(z))$ is starlike, then

\[zp'(z)\varphi(p(z)) \prec zq'(z)\varphi(q(z)), \]

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
2 Main Results

By making use of Lemma 1.1, we have the following:

Theorem 2.1. Let \(\phi(z) \) and \(F(z) \) be as in Lemma 1.1. The function \(f \in M_{q,s,b,\alpha}(\phi) \) if and only if for all \(|s| \leq 1 \) and \(|t| \leq 1 \), we have

\[
\left(\frac{s}{t} \left[(1-\alpha)H_{q,s}(\alpha_1)f(tz) + \alpha H_{q,s}(\alpha_1+1)f(sz) \right] \right)^{1/b} \preceq \frac{sF(tz)}{tF(sz)}.
\]

Proof: Define the function \(p(z) \) by

\[
p(z) := \left(\frac{(1-\alpha)H_{q,s}(\alpha_1)f(z) + \alpha H_{q,s}(\alpha_1+1)f(z)}{z} \right)^{1/b}.
\]

By taking logarithmic derivative of \(p(z) \) given by (2.2), we get

\[
\frac{zp'(z)}{p(z)} = \frac{1}{b} \left\{ \frac{(1-\alpha)z(H_{q,s}(\alpha_1)f(z))' + \alpha z(H_{q,s}(\alpha_1+1)f(z))'}{(1-\alpha)H_{q,s}(\alpha_1)f(z) + \alpha H_{q,s}(\alpha_1+1)f(z)} - 1 \right\}.
\]

By using the identity (1.7), we obtain by a straightforward computation, we get,

\[
1 + \frac{zp'(z)}{p(z)} = 1 + \frac{1}{b} (\Psi_{q,s}(\alpha_1)f(z) - 1)
\]

where

\[
\Psi_{q,s}(\alpha_1)f(z) = \frac{(1-\alpha)(\alpha_1+1)f(z) + (1-2\alpha_1\alpha)H_{q,s}(\alpha_1)f(z) - (1-\alpha)(\alpha_1-1)H_{q,s}(\alpha_1)f(z)}{(1-\alpha)H_{q,s}(\alpha_1)f(z) + \alpha H_{q,s}(\alpha_1+1)f(z)}.
\]

The result now follows from Lemma 1.1.

For \(q = 2 \) and \(s = 1 \), in Theorem 2.1 we get the following result in terms of the Hohlov operator.

Corollary 2.1. Let \(\phi(z) \) and \(F(z) \) be as in Lemma 1.1. The function \(f \in F_{b,\alpha}(\phi) \) if and only if for all \(|s| \leq 1 \) and \(|t| \leq 1 \), we have

\[
\left(\frac{s}{t} \left[(1-\alpha)F(\alpha_1,\alpha_2;\beta_1)f(tz) + \alpha F(\alpha_1+1,\alpha_2;\beta_1)f(tz) \right] \right)^{1/b} \preceq \frac{sF(tz)}{tF(sz)}.
\]
For $q = 2$, $s = 1$ and $\alpha_2 = 1$, in Theorem 2.1 we get the following result in terms of the Carlson–Shaffer operator.

Corollary 2.2. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in M_{\alpha_1, \beta_1, b, \alpha} (\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$ f((1 - \alpha)L(\alpha_1; \beta_1)f(tz) + \alpha L(\alpha_1 + 1; \beta_1)f(tz)) \leq \frac{sF(tz)}{tF(sz)}.$$

For $q = 2$, $s = 1$, $\alpha_1 = 1 + m$, $\alpha_2 = 1$ and $\beta_1 = 1$ in Theorem 2.1 we get the following result in terms of the Ruscheweyh derivative.

Corollary 2.3. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in M_{m, b, \alpha} (\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$ f((1 - \alpha)D^{m}f(tz) + \alpha D^{m+1}f(tz)) \leq \frac{sF(tz)}{tF(sz)}.$$

For $q = s = 1$, $\alpha_1 = \beta_1 = 1$, and $\alpha = 0$ in Theorem 2.1 we get

Corollary 2.4. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in S_{b}^{*} (\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$ sf(tz) \leq \frac{sF(tz)}{tF(sz)}.$$

For $q = s = 1$, $\alpha_1 = \beta_1 = 1$, and $\alpha = 1$ in Theorem 2.1 we get

Corollary 2.5. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in C_{b} (\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$ \left(\frac{f'(tz)}{f'(sz)} \right)^{\frac{1}{\delta}} \leq \frac{sF(tz)}{tF(sz)}.$$

As an immediate consequence of the above Corollary 2.4, we have

Corollary 2.6. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. If $f \in S_{b}^{*} (\phi)$, then we have

$$ \frac{f(z)}{z} \leq \left(\frac{F(z)}{z} \right)^{\delta}.$$
Theorem 2.2. Let \(\phi \) starlike with respect to 1 and \(F(z) \) is given by \((1.11)\) be starlike. If \(f \in M_{q,s,b,\alpha}(\phi) \), then we have

\[
(2.10) \quad \left(1 - \alpha \right) H_{q,s}(\alpha_1)f(z) + \alpha H_{q,s}(\alpha_1 + 1)f(z) \prec \left(\frac{F(z)}{z} \right)^b.
\]

Proof. Define the functions \(p(z) \) and \(q(z) \) by

\[
p(z) := \left(\frac{(1 - \alpha)H_{q,s}(\alpha_1)f(z) + \alpha H_{q,s}(\alpha_1 + 1)f(z)}{z} \right)^{1/b}, \quad q(z) := \left(\frac{F(z)}{z} \right).
\]

Then a computation yields

\[
1 + \frac{zp'(z)}{p(z)} = 1 + \frac{1}{b}(\Psi(z) - 1)
\]

where \(\Psi_{q,s}(\alpha_1)f(z) \) is as defined in \((2.4)\) and

\[
\frac{zq'(z)}{q(z)} = \left(\frac{zF'(z)}{F(z)} - 1 \right) = \phi(z) - 1.
\]

Since \(f \in M_{b,\alpha}^*(\phi) \), we have

\[
\frac{zp'(z)}{p(z)} = \frac{1}{b}(\Psi(a,c,z) - 1) \prec \phi(z) - 1 = \frac{zq'(z)}{q(z)}.
\]

The result now follows by an application of Lemma 1.2.

By taking \(\phi(z) = (1 + z)/(1 - z) \), \(q = s = 1 \), \(\alpha_1 = \beta_1 = 1 \) and \(\alpha = 0 \) in Theorem 2.2 we get the following result of Srivastava and Lashin [20]:

Example 2.1. If \(f \in S_b^* \), then

\[
\frac{f(z)}{z} \prec \frac{1}{(1 - z)^{2b}}.
\]

By taking \(\phi(z) = (1 + z)/(1 - z) \), \(q = s = 1 \), \(\alpha_1 = \beta_1 = 1 \) and \(\alpha = 1 \) in Theorem 2.2 we get another result of Srivastava and Lashin [20]:

Example 2.2. If \(f \in C_b \), where \(C_b = C_b(\phi) \) when \(\phi(z) = \frac{1 + z}{1 - z} \) then

\[
f'(z) \prec \frac{1}{(1 - z)^{2b}}.
\]
References

T.N. Shanmugam
Department of Mathematics
College of Engineering
Anna University, Chennai-600 025
Tamilnadu, India
E-mail: shan@annauniv.edu

S. Sivasubramanian
Department of Mathematics
Easwari Engineering College
Ramapuram, Chennai-600 08
Tamilnadu, India
E-mail: sivasaisastha@rediffmail.com

G. Murugusundaramoorthy
Department of Mathematics,
Vellore Institute of Technology,
Deemed University,
Vellore-632 014, India
E-mail: gmsmoorthy@yahoo.com