A criteria of \(\phi \)-like functions\(^1\)

Sushma Gupta, Sukjit Singh and Sukhwinden Singh

Abstract

In this paper, we obtain some sufficient conditions for a normalized analytic function to be \(\phi \)-like and starlike of order \(\alpha \).

2000 Mathematical Subject Classification: Primary 30C45, Secondary 30C50.

Key words: \(\phi \)-like function, starlike function, differential subordination.

1 Introduction

Let \(\mathcal{A} \) be the class of functions \(f \) which are analytic in the unit disc \(E = \{ z : |z| < 1 \} \) and are normalized by the conditions \(f(0) = f'(0) - 1 = 0 \).

Denote by \(S^*(\alpha) \) and \(K(\alpha) \), the classes of starlike functions of order \(\alpha \) and convex functions of order \(\alpha \) respectively, which are analytically defined as follows

\[
S^*(\alpha) = \left\{ f(z) \in \mathcal{A} : \Re \frac{zf'(z)}{f(z)} > \alpha, z \in E \right\}
\]

and

\[
K(\alpha) = \left\{ f(z) \in \mathcal{A} : \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, z \in E \right\}
\]

\(^1\)Received 20 July, 2007

Accepted for publication (in revised form) 20 December, 2007
where \(\alpha \) is a real number such that \(0 \leq \alpha < 1 \). We shall use \(S^* \) and \(K \) to denote \(S^*(0) \) and \(K(0) \), respectively which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

Let \(f \) and \(g \) be analytic in \(E \). We say that \(f \) is subordinate to \(g \) in \(E \), written as \(f(z) \prec g(z) \) in \(E \), if \(g \) is univalent in \(E \), \(f(0) = g(0) \) and \(f(E) \subset g(E) \).

Denote by \(S^*[A,B] \), \(-1 \leq B < A \leq 1 \), the class of functions \(f \in A \) which satisfy

\[
\frac{zf'(z)}{f(z)} < \frac{1+Az}{1+Bz}, \quad z \in E.
\]

Note that \(S^*[1-2\alpha,-1] = S^*(\alpha), \quad 0 \leq \alpha < 1 \) and \(S^*[1,-1] = S^* \).

A function \(f, f'(0) \neq 0 \), is said to be close-to-convex in \(E \), if and only if, there is a starlike function \(h \) (not necessarily normalized) such that

\[
\Re \frac{zf'(z)}{h(z)} > 0, \quad z \in E.
\]

Let \(\phi \) be analytic in a domain containing \(f(E) \), \(\phi(0) = 0 \) and \(\Re \phi'(0) > 0 \), then, the function \(f \in A \) is said to be \(\phi \)-like in \(E \) if

\[
\Re \frac{zf'(z)}{\phi(f(z))} > 0, \quad z \in E.
\]

This concept was introduced by L. Brickman [1]. He proved that an analytic function \(f \in A \) is univalent if and only if \(f \) is \(\phi \)-like for some \(\phi \). Later, Ruscheweyh [8] investigated the following general class of \(\phi \)-like functions:

Let \(\phi \) be analytic in a domain containing \(f(E) \), \(\phi(0) = 0, \phi'(0) = 1 \) and \(\phi(w) \neq 0 \) for \(w \in f(E) - \{0\} \), then the function \(f \in A \) is called \(\phi \)-like with respect to a univalent function \(q, q(0) = 1 \), if

\[
\frac{zf'(z)}{\phi(f(z))} < q(z), \quad z \in E.
\]

In the present note, we obtain some sufficient conditions for a normalized analytic function to be \(\phi \)-like. In [9], Silverman defined the class \(G_b \) as

\[
G_b = \left\{ f \in A : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < b, \quad z \in E \right\}
\]
and proved that the functions in the class G_b are starlike in E. Later on, this class was studied extensively by Tuneski [4,11,12,13,14,15]. As particular cases, we obtain many interesting results for the class G_b. Most of the results proved by Tuneski follow as corollaries to our theorem.

2 Preliminaries

We shall need following definition and lemmas to prove our results.

Definition 2.1. A function $L(z, t), z \in E$ and $t \geq 0$ is said to be a subordination chain if $L(., t)$ is analytic and univalent in E for all $t \geq 0$, $L(z, .)$ is continuously differentiable on $[0, \infty)$ for all $z \in E$ and $L(z, t_1) \prec L(z, t_2)$ for all $0 \leq t_1 \leq t_2$.

Lemma 2.1 [5, page 159]. The function $L(z, t) : E \times [0, \infty) \to \mathbb{C}$, ($\mathbb{C}$ is the set of complex numbers), of the form $L(z, t) = a_1(t)z + \ldots$ with $a_1(t) \neq 0$ for all $t \geq 0$, and $\lim_{t \to \infty} |a_1(t)| = \infty$, is said to be a subordination chain if and only if $\Re \left[\frac{\partial L}{\partial z} \frac{\partial L}{\partial t} \right] > 0$ for all $z \in E$ and $t \geq 0$.

Lemma 2.2 [3]. Let F be analytic in E and let G be analytic and univalent in E except for points ζ_0 such that $\lim_{z \to \zeta_0} F(z) = \infty$, with $F(0) = G(0)$. If $F \not\preceq G$ in E, then there is a point $z_0 \in E$ and $\zeta_0 \in \partial E$ (boundary of E) such that $F(|z| < |z_0|) \subset G(E)$, $F(z_0) = G(\zeta_0)$ and $z_0 F'(z_0) = mz_0 G'(\zeta_0)$ for some $m \geq 1$.

3 Main Result

Lemma 3.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let q be univalent function such that either $\frac{zq'(z)}{q(z)}$ is starlike in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function p, satisfies the differential subordination

\begin{equation}
(3.1) \quad 1 - \frac{\gamma}{p(z)} + \frac{zp'(z)}{p^2(z)} < 1 - \frac{\gamma}{q(z)} + \frac{zq'(z)}{q^2(z)}, \quad p(0) = q(0) = 1, \quad z \in E,
\end{equation}
then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Proof. Let us define a function

$$h(z) = 1 - \frac{\gamma}{q(z)} + \frac{zq'(z)}{q^2(z)}, \ z \in E. \quad (3.2)$$

Firstly, we will prove that $h(z)$ is univalent in E so that the subordination (3.1) is well-defined in E. Differentiating (3.2) and simplifying a little, we get

$$zh'(z) = \gamma + zQ'(z)Q(z), \ z \in E,$$

where $Q(z) = \frac{zq'(z)}{q^2(z)}$. In view of the given conditions, we obtain

$$\Re \frac{zh'(z)}{Q(z)} > 0, \ z \in E.$$

Thus, $h(z)$ is close-to-convex and hence univalent in E. We need to show that $p \prec q$. Suppose to the contrary that $p \not\prec q$ in E. Then by Lemma 2.2, there exist points $z_0 \in E$ and $\zeta_0 \in \partial E$ such that $p(z_0) = q(\zeta_0)$ and $z_0p'(z_0) = m\zeta q'(\zeta_0), \ m \geq 1$. Then

$$1 - \frac{\gamma}{p(z_0)} + \frac{z_0p'(z_0)}{p^2(z_0)} = 1 - \frac{\gamma}{q(\zeta_0)} + \frac{m\zeta q'(\zeta_0)}{q^2(\zeta_0)}, \ z \in E. \quad (3.3)$$

Consider a function

$$L(z, t) = 1 - \frac{\gamma}{q(z)} + (1 + t) \frac{zq'(z)}{q^2(z)}, \ z \in E. \quad (3.4)$$

The function $L(z, t)$ is analytic in E for all $t \geq 0$ and is continuously differentiable on $[0, \infty)$ for all $z \in E$. Now,

$$a_1(t) = \left(\frac{\partial L(z, t)}{\partial z} \right)_{(0,t)} = q'(0)(\gamma + 1 + t).$$

In view of the condition that $\Re \gamma \geq 0$, we get $|\arg(\gamma + 1 + t)| \leq \pi/2$. Also, as q is univalent in E, so, $q'(0) \neq 0$. Therefore, it follows that $a_1(t) \neq 0$ and
\[\lim_{t \to \infty} |a_1(t)| = \infty. \] A simple calculation yields
\[\frac{z \frac{\partial L}{\partial z}}{\frac{\partial L}{\partial t}} = \gamma + (1 + t) \frac{z Q'(z)}{Q(z)}, \quad z \in E. \]

Clearly
\[\Re \frac{z \frac{\partial L}{\partial z}}{\frac{\partial L}{\partial t}} > 0, \quad z \in E, \]
in view of given conditions. Hence, \(L(z, t) \) is a subordination chain. Therefore, \(L(z, t_1) \prec L(z, t_2) \) for \(0 \leq t_1 \leq t_2 \). From (3.4), we have \(L(\zeta_0, t) \notin h(E) \) for \(|\zeta_0| = 1 \) and \(t \geq 0 \). In view of (3.3) and (3.4), we can write
\[1 - \frac{\gamma}{p(z_0)} + \frac{z_0 p'(z_0)}{p^2(z_0)} = L(\zeta_0, m - 1) \notin h(E), \]
where \(z_0 \in E, |\zeta_0| = 1 \) and \(m \geq 1 \) which is a contradiction to (3.1). Hence, \(p \prec q \). This completes the proof of the Lemma.

Theorem 3.1. Let \(\gamma, \Re \gamma \geq 0 \), be a complex number. Let \(q, q(0) = 1 \), be a univalent function such that \(\frac{z q'(z)}{q(z)} \) is starlike in \(E \) or, equivalently, \(\frac{1}{q(z)} \) is convex in \(E \). If an analytic function \(f \in A \) satisfies the differential subordination
\[1 + \frac{1 - \gamma + z f''(z)/f'(z)}{zf'(z)/f(z)}/(z f'(z)/\phi(f(z)))' < 1 - \frac{\gamma}{q(z)} + \frac{z q'(z)}{q^2(z)}, \quad z \in E, \]
for some function \(\phi \), analytic in a domain containing \(f(E) \), \(\phi(0) = 0, \phi'(0) = 1 \) and \(\phi(w) \neq 0 \) for \(w \in f(E) - \{0\} \), then \(\frac{z f'(z)}{\phi(f(z))} \prec q(z) \) and \(q(z) \) is the best dominant.

Proof. The proof of the theorem follows by writing \(p(z) = \frac{z f'(z)}{\phi(f(z))} \) in Lemma 3.1.

In particular, for \(\phi(w) = w \) and \(q(z) = \frac{z q'(z)}{q(z)} \) in Theorem 3.1, we obtain the following result.

Theorem 3.2. Let \(\gamma, \Re \gamma \geq 0 \), be a complex number. Let \(g \in A \) be such that \(\frac{z g'(z)}{g(z)} = q(z) \) is univalent in \(E \). Assume that either \(\frac{z q'(z)}{q(z)} \) is starlike
in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function $f \in A$ satisfies the differential subordination

$$1 - \gamma + zf''(z)/f'(z) < 1 - \gamma + zg''(z)/g'(z), \quad z \in E,$$

then $\frac{zf''(z)}{f'(z)} < \frac{zg''(z)}{g'(z)}$.

4 Applications to univalent functions

In this section, we obtain a criterion for a normalized analytic function to be ϕ-like. As an application of Theorems 3.1 and 3.2, we obtain some new conditions and also few existing conditions for a function to be in the class S^* and $S^*(\alpha)$.

When the dominant is $q(z) = \frac{1+Az+Bz}{1+Bz}$. We observe that q is univalent in E and $\frac{1}{q(z)}$ is convex in E where $-1 \leq B < A \leq 1$. From Theorem 3.1, we deduce the following result.

Theorem 4.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B < A \leq 1$. Let $f \in A$ satisfy the differential subordination

$$1 + \frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} - \frac{(\phi(f(z)))'}{f'(z)} < 1 - \gamma \frac{1 + Bz}{1 + A} + \frac{(A - B)z}{(1 + A)z^2}, \quad z \in E,$$

for some function ϕ, analytic in a domain containing $f(E)$, $\phi(0) = 0, \phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then $\frac{zf'(z)}{\phi(f(z))} < \frac{1+Az}{1+Bz}, \quad z \in E$.

As an example, if we take $\gamma = i, A = 0, B = -1$ in Theorem 4.1, we obtain the following result.

Example 4.1. Let $f \in A$ satisfy

$$\left| \frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} - \frac{(\phi(f(z)))'}{f'(z)} + i \right| < \sqrt{2}, \quad z \in E,$$

then $\frac{zf'(z)}{\phi(f(z))} < \frac{1}{1-\gamma}, \quad z \in E$.

In particular, for $\gamma = 0$ and $A = 1, B = -1$, Theorem 4.1, reduces to the following result.

Corollary 4.1. Let $f \in A$ satisfy the differential subordination

$$1 + zf''(z)/f'(z) < 2z/(1 + z)^2, \quad z \in E,$$

for some function ϕ, analytic in a domain containing $f(E)$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then $\Re \frac{zf'(z)}{\phi(f(z))} > 0, \quad z \in E$.

Note that several such results are available for different substitutions of constants A, B.

For the dominant $q(z) = \frac{1 + Az}{1 + Bz}$, Theorem 3.2 gives us the following result.

Theorem 4.2. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B < A \leq 1$. Let $f \in A$ satisfy the differential subordination

$$1 - \gamma + zf''(z)/f'(z) \prec 1 + Bz + (A - B)z/(1 + Az)^2, \quad z \in E,$$

then $f \in S^*[A, B]$.

Writing $\gamma = 1$ in Theorem 4.2, we obtain the following result.

Corollary 4.2. If $f \in A$ satisfies the differential subordination

$$f''(z)f(z)/f^2(z) \prec 1 - \gamma + Bz + (A - B)z/(1 + Az)^2, \quad z \in E, \quad -1 \leq B < A \leq 1,$$

then $f \in S^*[A, B]$.

Writing $A = 0$ in Theorem 4.2, we obtain the following result.

Corollary 4.3. Let $f \in A$ satisfy

$$\left| 1 - \gamma + zf''(z)/f'(z) \right| < (1 + \gamma)B, \quad z \in E, \quad \gamma \geq 0, \quad 0 < B \leq 1,$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1}{1 + Bz}, \quad z \in E.$$
In particular, for $\gamma = 1$, in Corollary 4.3, we obtain the following result.

Corollary 4.4. Let $f \in A$ satisfy

$$\left| \frac{f(z)f''(z)}{f'^2(z)} \right| < 2B, \ z \in E, \ 0 < B \leq 1,$$

then

$$\frac{zf'(z)}{f(z)} < \frac{1}{1 + Bz}, \ z \in E.$$

The selection of $B = 0$ in Theorem 4.2 gives us the following result.

Corollary 4.5. Let $f \in A$ satisfy

$$\frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} < 1 - \frac{\gamma}{1 + Az} + \frac{Az}{(1 + Az)^2}, \ z \in E, \ \gamma \geq 0, \ 0 < A \leq 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

In particular, for $\gamma = 0$ in Corollary 4.5, we obtain the following result.

Corollary 4.6. Let $f \in A$ satisfy

$$\frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} < 1 + \frac{Az}{(1 + Az)^2}, \ z \in E, \ 0 < A \leq 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

Taking $\gamma = 1$ in corollary 4.5, we obtain the following result.

Corollary 4.7. If

$$\frac{f(z)f''(z)}{f'^2(z)} < 1 - \frac{1}{(1 + Az)^2}, \ z \in E, \ 0 < A \leq 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

Remark 4.1. (i) Writing $\gamma = 0$ in Theorem 4.2, we obtain the Theorem 2.3 in [14].
(ii) Writing $A = -1, B = 1$ in Theorem 4.2, we obtain Theorem 1 of [15].

(iii) Taking $A = 1, B = -1, \gamma = 0$ in Theorem 4.2, we obtain Theorem 3 in [4].

(iv) Taking $A = -1, B = 1, \gamma = 1$ in Theorem 4.2, we get Theorem 1 in [12].

(v) Taking $A = 0, \gamma = 0$ in Theorem 4.2, we obtain Theorem 1 in [4].

(vi) Writing $A = 0, B = -1, \gamma = 1$ in Theorem 4.2, we obtain the following result:

If $f \in \mathcal{A}$ satisfies $\frac{f''(z)f(z)}{f'^2(z)} < 2z$, $z \in E$, then $f \in S^*(1/2)$.

This is an improvement of Corollary 2 proved in [12].

(vii) Taking $A = -(1 - 2\alpha), B = 1, 0 \leq \alpha < 1$ in Theorem 4.2, we get Theorem 3 in [15].

(viii) Writing $A = -(1 - 2\alpha), B = 1, 0 \leq \alpha < 1$ and $\gamma = 0$ in Theorem 4.2, we obtain Corollary 4(i) in [15].

(ix) Writing $A = -(1 - 2\alpha), B = 1, 0 \leq \alpha < 1$ and for $\gamma = 1$ in Theorem 4.2, Corollary 4(ii) in [15] follows.

(x) For $B = \frac{1-\beta}{\beta}, 1/2 \leq \beta < 1$ in Corollary 4.4, we obtain the result of Robertson [7].

(xi) Taking $q(z) = \frac{2\alpha}{1+z}$ in Theorem 3.2, we obtain Theorem 2 in [15].

References

Sushma Gupta and Sukhjit Singh
Department of Mathematics
S.L.I.E.T., Longowal-148 106 (Punjab) India
E-mail: sushmagupta1@yahoo.com
sukhjit_d@yahoo.com

Sukhwinder Singh
Department of Applied Sciences
B.B.S.B. Engineering College
Fatehgarh Sahib-140 407 (Punjab) India
E-mail: ss_billing@yahoo.co.in