On the confluent hypergeometric function
coming from the Pareto distribution

Katsuo Takano

Abstract

Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form

$$\zeta(s) = hU(1; 1 - h; s)$$

$$= {}_1F_1(1; 1 - h; s) - \Gamma(1 - h)s^h {}_1F_1(1 + h; 1 + h; s).$$

About this transform, we obtain an identity,

$$\Gamma(1 + h)|U(1, 1 - h, s)|^2 = \int_0^\infty \int_0^\infty \frac{\lambda^h e^{-\lambda y}}{|\lambda + s|^2 + \lambda y} dy d\lambda.$$

2000 Mathematical Subject Classification: 33C15, 60E07

Key words and phrases: Laplace transform, Confluent hypergeometric function, Pareto distribution
1 Introduction

If $h = l + h_1$, $0 < h_1 < 1$, where l is a positive integer, let us denote

$$u(t) := \frac{\Gamma(1 - h_1) \sin \pi h_1 t^h}{(h - 1) \cdots (h - l)} e^{-t},$$

and

$$v(t) := 1 + \sum_{j=1}^{l} \frac{t^j}{(h - 1) \cdots (h - j)}$$

$$+ \frac{t^l}{(h - 1) \cdots (h - l)} \sum_{j=1}^{h_1} \frac{t^j}{(h_1 - 1) \cdots (h_1 - j)}$$

$$- \frac{\Gamma(1 - h_1)}{(h - 1) \cdots (h - l)} t^h e^{-t} \cos \pi h_1.$$

Let us denote

$$\delta_j := 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{j}, \quad j = 1, 2, ...$$

and let γ be the Euler constant. If $h = l$, which is the case $h_1 = 0$ in the above, let us denote

$$u(t) := \frac{\pi}{(l - 1)!} t^l e^{-t},$$

and

$$v(t) := 1 + \sum_{j=1}^{l-1} \frac{t^j}{(l - 1) \cdots (l - i)}$$

$$+ \frac{t^l}{(l - 1)!} \left\{ \sum_{j=1}^{\infty} (-1)^j \delta_j \frac{t^j}{j!} + \gamma e^{-t} - e^{-t} \log t \right\}.$$

Let us denote

$$c_1 := \frac{\Gamma(1 - h_1) \sin \pi h_1}{(h - 1) \cdots (h - l)},$$

and

$$c_2 := \frac{\pi}{(l - 1)!}.$$
It is the purpose of this paper to show that the following identity holds:

\[
\pi \frac{c}{c(1, h)h} \{ u^2(t) + v^2(t) \} = \int_0^\infty \int_0^\infty \frac{\lambda^h e^{-\lambda-y}}{(t-\lambda)^2 + y\lambda} \, dy \, d\lambda
\]

for positive \(t \), where \(c(1, h) = c_1 \) if \(h \) is non-integer, \(; = c_2 \) if \(h = l \) is a positive integer.

2 Pareto distribution

The Pareto distribution is usually defined by

\[
F(x) = \begin{cases}
1 - \left(\frac{c}{x} \right)^h, & x \geq c, \\
0, & x < c,
\end{cases}
\]

where \(c > 0, \ h > 0 \) are the determining parameters. In this paper we take \(c = 1 \) and let the Pareto distribution be

\[
F(x) = \begin{cases}
1 - \frac{1}{(1 + x)^h}, & x \geq 0, \\
0, & x < 0.
\end{cases}
\]

Then the Pareto density is

\[
F'(x) = \begin{cases}
\frac{h}{(1 + x)^{1+h}}, & x > 0, \\
0, & x < 0.
\end{cases}
\]

Suppose that \(h = 1 + h_1, \ 0 < h_1 < 1 \). Integrating by parts, we see that

\[
\zeta(s) = \int_0^\infty e^{-sx} \frac{h}{(1 + x)^{1+h}} \, dx = he^s \int_1^\infty e^{-st} t^{-1-h} \, dt
\]

\[
= 1 + \frac{-s}{h-1} + e^s \frac{(-s)^2}{h-1} \int_1^\infty e^{-st} t^{1-h} \, dt
\]
We see that
\[\int_1^\infty e^{-st} t^{-h_1} dt = \int_0^\infty e^{-st} t^{-h_1} dt - \int_0^1 e^{-st} t^{-h_1} dt \]
\[= \Gamma (1 - h_1)s^{h_1 - 1} - \int_0^1 e^{-st} t^{-h_1} dt \]

Repeating integration by parts \(j \) times, we obtain
\[\int_0^1 e^{-st} t^{-h_1} dt = \frac{1}{(h_1 - 1)(h_1 - 2)} + \frac{(-s)^{j-1}}{(h_1 - 1) \cdots (h_1 - j)} \]
\[+ \frac{(-s)^j}{(h_1 - 1) \cdots (h_1 - j)} \int_0^1 e^{-st} t^{-h_1} dt. \]

It is seen that
\[\left| \frac{(-s)^j}{(h_1 - 1) \cdots (h_1 - j)} \int_0^1 e^{-st} t^{-h_1} dt \right| \leq \left| \frac{(-s)^j}{(h_1 - 1) \cdots (h_1 - j)} \right| \frac{1}{j + 1 - h} \to 0 \]
as \(j \to \infty \) for \(|s| < \infty \). Hence we obtain
\[\zeta(s) = 1 + \frac{(-s)}{h - 1} \]
\[+ \frac{(-s)^2}{(h_1 - 1)} \cdot \left\{ \frac{1}{(h_1 - 1)(h_1 - 2)} + \frac{(-s)}{(h_1 - 1) \cdots (h_1 - j)} \right\} \]
\[- \frac{\Gamma(1 - h_1)}{h - 1} (-s) e^s s^{h_1} \]

for \(h = 1 + h_1, \ 0 < h_1 < 1 \) and \(|s| < \infty \). In general, if \(l \) is a positive integer and \(h = l + h_1, \ 0 < h_1 < 1 \), we obtain
\[\zeta(s) = 1 + \sum_{j=1}^{l} \frac{(-s)^j}{(h - 1) \cdots (h - i)} \]
\[+ \frac{(-s)^j}{(h - 1) \cdots (h - l)} \sum_{j=1}^{\infty} \frac{(-s)^j}{(h_1 - 1) \cdots (h_1 - j)} \]
\[- \frac{\Gamma(1 - h_1)}{(h - 1) \cdots (h - l)} (-s)^l e^s s^{h_1}. \]
If $0 < h < 1$, we have

$$\zeta(s) = 1 + \sum_{j=1}^{\infty} \frac{(-s)^j}{(h-1) \cdots (h-j)} - \Gamma(1-h)s^h e^s.$$

In the above $\zeta(s)$, in order to have a single-valued function, we take the branch of $s^h_1 = e^{h_1 \log s}$ as $s^h_1 > 0$ for $s > 0$. The function $\zeta(s)$ can be defined by analytic continuation on the whole complex plane with the cut along the negative real axis including zero. If $s = -t + i \rho$, $t > 0$, $\rho > 0$, we see that

$$\text{Re } \zeta^+(-t) = \lim_{\rho \to 0^+} \text{Re } \zeta(-t + i \rho)$$

$$= 1 + \sum_{j=1}^{l} \frac{t^j}{(h-1) \cdots (h-i)} + \frac{t^l}{(h-1) \cdots (h-l)} \sum_{j=1}^{\infty} \frac{t^j}{(h_1-1) \cdots (h_1-j)} - \Gamma(1-h_1) (h-1) \cdots (h-l) t^l e^{-t} \text{Re } e^{h_1 \log(-t+i \rho)}$$

$$= 1 + \sum_{j=1}^{l} \frac{t^j}{(h-1) \cdots (h-i)} + \frac{t^l}{(h-1) \cdots (h-l)} \sum_{j=1}^{\infty} \frac{t^j}{(h_1-1) \cdots (h_1-j)} - \Gamma(1-h_1) (h-1) \cdots (h-l) t^l e^{-t} \cos \pi h_1 \tag{7}$$

In the same manner, we have

$$\text{Re } \zeta^+(-t) = \text{Re } \zeta^-(t).$$

We also see that

$$\text{Im } \zeta^+(-t) = \lim_{\rho \to 0^+} \text{Im } \zeta(-t + i \rho)$$

$$= -\frac{\Gamma(1-h_1)}{(h-1) \cdots (h-l)} t^h e^{-t} \sin \pi h_1 \tag{8}$$
On the confluent hypergeometric function, 69

and $Im \zeta^+(-t) = -Im \zeta^-(t)$ for $t > 0$. We have $-Im \zeta^+(-t) = u(t)$ and $Re \zeta^+(-t) = v(t)$. From (7) we have

$$
\zeta(s) = 1 + \sum_{j=1}^{\infty} \frac{s^j}{(1-h) \cdots (i-h)}\frac{s^j}{(1-h) \cdots (l-h)}
$$

and using the confluent hypergeometric function,

$$
\frac{1}{b^{a+1} (b+1)^{a+2}} + \frac{a(a+1) s^2}{b(b+1)(b+2)} \frac{1}{(1-h)(1-h_1) \cdots (j-h_1)} + \cdots,
$$

where $b \neq -1, -2, \cdots$, we can write as follows;

$$
\zeta(s) = {}_1F_1(1; 1-h; s) - \Gamma(1-h) s^h {}_1F_1(1+h; 1+h; s)
$$

(10)

and using the confluent hypergeometric function,

$$
\frac{1}{b^{a+1} (b+1)^{a+2}} + \frac{a(a+1) s^2}{b(b+1)(b+2)} \frac{1}{(1-h)(1-h_1) \cdots (j-h_1)} + \cdots
$$

for $|t| < \infty$. As $x \to +0$, it holds that

$$
\left| \frac{1}{x} \sum_{j=1}^{\infty} \frac{(-1)^j t^j}{(1-x) \cdots (j-x)} - e^{-t} \right|
$$

(11)

for $|t| < \infty$. As $x \to +0$, it holds that

$$
\left| \frac{1}{x} \sum_{j=1}^{\infty} \frac{(-1)^j t^j}{(1-x) \cdots (j-x)} - e^{-t} \right|
$$

(12)

for $|t| < \infty$. As $x \to +0$, it holds that
By the mean value theorem we see that
\[
\left| \frac{1}{x} \left\{ \frac{1}{x} \prod_{j=1}^{n} \left(1 - \frac{x}{j} \right) - 1 \right\} \right| \leq \frac{1}{x} \left\{ \frac{1}{x} \right\}^{-1} = j(1-\theta x)^{-1} \leq 2^{j+1},
\]
(0 < \theta < 1) for 0 < x \leq \frac{1}{2}. Hence if 0 < x \leq \frac{1}{2}, (11) converges uniformly with respect to t in each finite interval including the origin. Since
\[
\lim_{x \to 0^+} \frac{1}{x} \left\{ \frac{1}{x} \prod_{j=1}^{n} \left(1 - \frac{x}{j} \right) - 1 \right\} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{j},
\]
differentiating by term by term, we obtain (10). As \(h_1 \to +0 \), we have
\[
u(t) = \frac{\Gamma(1-h_1) \sin \pi h_1}{(h-1)\cdots(h-l)}t^l e^{-t} \to u(l; t) = \frac{\pi}{(l-1)!}t^l e^{-t}.
\]
We obtain that
\[
v(t) = 1 + \sum_{j=1}^{l} \frac{t^j}{(h-1)\cdots(h-i)}
+ \frac{t^j}{(h-1)\cdots(h-i)} \sum_{j=1}^{\infty} \frac{(h-1)\cdots(h-j)}{(h-1)\cdots(h-l)} t^l e^{-t} \cos \pi h_1
- \frac{t^j}{(h-1)\cdots(h-i)} \sum_{j=1}^{l} \frac{(-1)^j \delta_j}{j!} t^j + \gamma e^{-t} - e^{-t} \log t
\]
(13)
\[
\text{In fact, it is seen that}
\]
\[
c_1 = \frac{\Gamma(1-h_1) \sin \pi h_1}{(h-1)\cdots(h+1)h_1} \to \frac{\pi}{(l-1)!} = c_2 \quad \text{as} \quad h_1 \to +0,
\]
and from (6) we have
\[
v(t) = 1 + \sum_{j=1}^{l-1} \frac{t^j}{(h-1)\cdots(h-i)}
+ \frac{t^j}{(h-1)\cdots(h-l+1)h_1} \left\{ 1 + \sum_{j=1}^{\infty} \frac{t^j}{(h-1)\cdots(h-j)} \right\}
- \frac{t^l}{(h-1)} e^{-t} \cos \pi h_1,\]
(14)
and we obtain that
\[\frac{1}{h_1} \left\{ 1 + \sum_{j=1}^{\infty} \frac{t^j}{(h_1 - 1) \cdots (h_1 - j)} \right\} - \Gamma(1 - h_1) t^{h_1} e^{-t} \cos \pi h_1 \]
\[\to \sum_{j=1}^{\infty} (-1)^j \delta_j \frac{t^j}{j!} + \gamma e^{-t} - e^{-t} \log t \]
as \(h_1 \to +0 \).

3 An identity on the confluent hypergeometric function

Let us denote the Pareto density by
\[p_h(x) = \frac{h}{(1 + x)^{1+h}}, \quad x > 0. \]

Theorem 1. It holds that
\[\Gamma(1 + h)|U(1, 1 - h, s)|^2 = \int_0^\infty \int_0^\infty \frac{\lambda^h e^{-\lambda - y}}{|\lambda + s|^2 + \lambda y} dyd\lambda \]
for \(-\pi < \arg s < +\pi\). Hence the confluent hypergeometric function \(U(1, 1 - h, s) \) does not have zeros outside except cut along nonpositive real line. If \(s = -t < 0 \) it holds that
\[\Gamma(1 + h)|U(1, 1 - h, -t)|^2 = \frac{\pi}{c(1, h)h} \left\{ u(t)^2 + v(t)^2 \right\} \]
\[= \int_0^\infty \int_0^\infty \frac{\lambda^h e^{-\lambda - y}}{|\lambda - t|^2 + \lambda y} dyd\lambda \]
and the double integral is convergent for \(t > 0 \).
Proof. The Laplace transform of the Pareto density $\zeta(s)$ is defined for $\text{Re } s \geq 0$ and $\zeta(+0) = 1$. Let us denote the extension of $\zeta(s)$ by analytic continuation by $\phi(s)$. The density function $p_h(x)$ can be extended to the complex plane by analytic continuation and we have

$$\phi(s) = e^{i\theta} \int_0^\infty e^{-se^{i\theta}x} p_h(e^{i\theta}x) dx$$

for $-\pi < \arg s < \pi$ and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, such that $\text{Re } se^{i\theta} > 0$. (cf. G. Sansone and J.C.H. Gerretsen, [4], section 8.13) By Schwartz’s reflection principle it holds that

$$\bar{\phi}(s) = e^{-i\theta} \int_0^\infty e^{-se^{-i\theta}x} p_h(e^{-i\theta}x) dx.$$

Hence we have

$$|\phi(s)|^2 = \int_0^\infty \int_0^\infty \exp\{-se^{i\theta}x - se^{-i\theta}y\} p_h(e^{i\theta}x) p_h(e^{-i\theta}y) dxdy,$$

and by change of variables, $x = uv$, $y = \frac{u}{v}$, we have

$$|\phi(s)|^2 = \int_0^\infty \int_0^\infty \frac{2u}{v} \exp\{-se^{i\theta}uv - se^{-i\theta}u\} p_h(e^{i\theta}uv) p_h(e^{-i\theta}u) dvdu,$$

From the following relation,

$$p_h(uv)p_h\left(\frac{u}{v}\right) = \frac{h^2}{\{1 + u(v + 1/v) + u^2\}^{1+h}}$$

$$= \int_0^\infty \exp\{-\lambda u(v + \frac{1}{v})\} \frac{h^2}{\Gamma(1 + h)} \exp\{-\lambda(1 + u^2)\} \lambda^h d\lambda \quad (18)$$

we see that
\[|\phi(s)|^2 = \int_0^\infty \int_0^\infty \frac{2u}{v} \exp\{-se^{i\theta}uv - \bar{s}e^{-i\theta}u/v\} du dv \]
\[
\cdot \int_0^\infty \exp\{-\lambda u(e^{i\theta}v + e^{-i\theta}v)\} \cdot \frac{h^2}{\Gamma(1 + h)} \exp\{-\lambda(1 + u^2)\} \lambda^h d\lambda \]
\[
= \int_0^\infty \int_0^\infty 2u\lambda^h \frac{h^2}{\Gamma(1 + h)} \exp\{-\lambda(1 + u^2)\} d\lambda du \]
\[
\cdot \int_0^\infty \frac{1}{v} \exp\{-s\lambda e^{-i\theta}uv - (\lambda + \bar{s})e^{-i\theta}u/v\} dv. \tag{19} \]

In fact, by the assumption that \(-\pi < \arg s < \pi, -\frac{\pi}{2} < \theta < \frac{\pi}{2}\), such that \(\text{Re} se^{i\theta} > 0\), the three fold integral is written as follows,

\[
\int_0^\infty \int_0^\infty \int_0^\infty \frac{2u}{v} \left| \exp\{-se^{i\theta}uv - \bar{s}e^{-i\theta}u/v\} \right|
\cdot \left| \exp\{-\lambda u(e^{i\theta}v + e^{-i\theta}v)\} \right| \cdot \frac{h^2}{\Gamma(1 + h)} \exp\{-\lambda(1 + u^2)\} \lambda^h d\lambda du dv
\]
\[
\cdot \int_0^\infty \frac{1}{v} \exp\{-s\lambda e^{-i\theta}uv - (\lambda + \bar{s})e^{-i\theta}u/v\} dv. \tag{20} \]

and the double integral is convergent and so we can change the order of integration in the three fold integral by the Fubini theorem. Let

\[\Theta = \arg u(\lambda + \bar{s})e^{-i\theta} \]

and suppose \(\Theta > 0\). From \(\text{Re} u(\lambda + \bar{s})e^{-i\theta} > 0\) it holds that \(\Theta < \frac{\pi}{2}\). On the following integral

\[
\int_0^\infty \frac{1}{v} \exp\{-s\lambda e^{i\theta}uv - (\lambda + \bar{s}e^{-i\theta})u/v\} dv
\]

consider the contour integral along the curve \(C_{aABb}\), which is compose of a real interval \([a, A]\) and a large arc \(A \sim B\) with radius \(R\) and a segment
starting from $b = re^{i\Theta}$ to $B = Re^{i\Theta}$ and a small arc $a \bowtie b$ with radius r. We can see that the contour integral along the arc $A \bowtie B$ tends to 0 as R tends to ∞ and the contour integral along the small arc $a \bowtie b$ tends to 0 as r tends to 0. By the Cauchy theorem it is seen that the variable can be changed such as $v = u(\lambda + \bar{s})e^{-i\rho}$. Hence we obtain

$$\mathcal{F}(s)^2 = \int_0^{\infty} \int_0^{\infty} d\lambda du \int_0^{\infty} 2u\lambda^h \frac{\lambda^2}{\Gamma(1+h)} \exp\{-\lambda(1+u^2)\}$$

\begin{align*}
&\cdot \exp\{[\lambda + s]^2u^2 - \frac{1}{\rho}\} \frac{d\rho}{\rho} \\
&= \int_0^{\infty} \int_0^{\infty} d\lambda d\rho u \frac{\lambda^2}{\Gamma(1+h)} \lambda^h \exp\{-\lambda - \frac{1}{\rho}\} \cdot \frac{1}{\rho} \\
&\cdot \int_0^{\infty} 2u \exp\{-[\lambda + s]^2\rho + \lambda^2\} du \\
&= \frac{h^2}{\Gamma(1+h)} \int_0^{\infty} \int_0^{\infty} \lambda^h \frac{e^{-\lambda - y}}{\lambda + s^2 + \lambda y} d\lambda du.
\end{align*}

(21)

From this and the relation

$$\frac{\pi}{c(1,h)h} = \frac{\Gamma(h)^2}{\Gamma(1+h)},$$

we obtain the identity (15) and the right hand side of (15) is always positive and finite if $\text{Im } s \neq 0$. Considering the limit of the left hand side of (15) as $s = -t + i\rho \to -t < 0$ then the integrand of right hand side is positive, and by using the Lebesgue monotone convergence theorem and by the fact that the left hand side of the series is convergent we see that the right hand side of (16), i.e. the double integral, is convergent for $t > 0$. q.e.d.
References

Department of Mathematics, Faculty of Science, Ibaraki University
Mito-city, Ibaraki 310 JAPAN
ktaka@mx.ibaraki.ac.jp