Integral Means and fractional calculus operators for comprehensive family of univalent functions with negative coefficients

B. A. Frasin, G. Murugusundaramoorthy and N. Mageshand

Abstract
In this paper, we obtain the integral means inequality for the function $f(z)$ belongs to the class $UT(\Phi, \Psi, \gamma, k)$ of analytic and univalent functions with negative coefficients defined in [3] with the extremal functions of this class. And also we derive some distortion theorems using fractional calculus techniques for the class $UT(\Phi, \Psi, \gamma, k)$.

2000 Mathematics Subject Classification: 30C45.
Keywords: Univalent, starlike, convex, uniformly convex, uniformly starlike, Hadamard product, integral means, Fractional calculus

Received 28 August, 2006
Accepted for publication (in revised form) 19 September, 2006
1 Introduction and definitions

Let A denote the class of functions of the form

\begin{equation}
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\end{equation}

which are analytic and univalent in the open disc $\mathcal{U} = \{ z : z \in \mathbb{C}, |z| < 1 \}$.

Also denote by T the subclass of A consisting of functions of the form

\begin{equation}
 f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \geq 0, \quad z \in \mathcal{U}
\end{equation}

introduced and studied by Silverman [16].

Following Goodman [5, 6], Rønning [12, 13] introduced and studied the following subclasses

(i) A function $f \in A$ is said to be in the class $S_p(\gamma, k)$, k–uniformly starlike functions of order γ, if it satisfies the condition

\begin{equation}
 \Re \left\{ \frac{zf'(z)}{f(z)} - \gamma \right\} > k \left| \frac{zf''(z)}{f(z)} - 1 \right|, \quad z \in \mathcal{U}, \quad 0 \leq \gamma < 1 \text{ and } k \geq 0.
\end{equation}

(ii) A function $f \in A$ is said to be in the class $UCV(\gamma, k)$, k–uniformly convex functions of order γ, if it satisfies the condition

\begin{equation}
 \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} - \gamma \right\} > k \left| \frac{zf'''(z)}{f'(z)} \right|, \quad z \in \mathcal{U}, \quad 0 \leq \gamma < 1 \text{ and } k \geq 0.
\end{equation}

Indeed it follows from (1.3) and (1.4) that

\begin{equation}
 f \in UCV(\gamma, k) \iff zf' \in S_p(\gamma, k).
\end{equation}

Definition 1.1 ([3]). Given $\gamma(-1 \leq \gamma < 1), k(k \geq 0)$ and functions

\[\Phi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n \text{ and } \Psi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n \]
analytic in U, such that $\lambda_n \geq 0$, $\mu_n \geq 0$ and $\lambda_n \geq \mu_n$ for $n \geq 2$, we let $f \in A$ is in $U(\Phi, \Psi, \alpha, \beta)$ if $(f \ast \Psi)(z) \neq 0$ and

$$\text{Re} \left\{ \frac{(f \ast \Phi)(z)}{(f \ast \Psi)(z)} - \gamma \right\} \geq k \left| \frac{(f \ast \Phi)(z)}{(f \ast \Psi)(z)} - 1 \right|, \quad \forall \ z \in U,$$

where (*) stands for the Hadamard product.

Further let $UT(\Phi, \Psi, \alpha, \beta) = U(\Phi, \Psi, \alpha, \beta) \cap T$.

We note that, by taking suitable choice of Φ, Ψ, α and β we obtain the following subclasses studied in literature.

1. $UT\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}, \gamma, 1\right) = TS_p(\gamma)$ (Subrmanian et al., [22])

2. $UT\left(\frac{z+2z^2}{(1-z)^2}, \frac{z}{1-z}, \gamma, k\right) = S_p T(\gamma, k)$ (Bharati et al., [1])

3. $UT\left(\frac{z+2z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, 0, 1\right) = UCT$ (Subrmanian et al., [21])

4. $UT\left(\frac{z+2z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, 0, k\right) = UCT(k)$ (Subrmanian et al., [21])

5. $UT\left(\frac{z+2z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, \gamma, 1\right) = UCT(\gamma)$ (Bharati et al., [1])

6. $UT\left(\frac{z+2z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, \gamma, k\right) = UCT(\gamma, k)$ (Bharati et al., [1])

7. $UT\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}, \gamma, 0\right) = S^*_T(\gamma)$ (Silverman [16])
8. \(UT\left(\frac{z+z^2}{(1-z^2)^2}, \gamma, 0\right) = K_T(\gamma) \) (Silverman [16])

9. \(UT(\Phi, \Psi, \gamma, 0) = E_T(\Phi, \Psi, \gamma) \) (Juneja et al.[7]).

10. \(UT(\Phi, \Psi, \frac{1+\beta-2\alpha}{2(1-\alpha)}, 0) = B_T(\Phi, \Psi, \alpha, \beta) \) (Frasin [4]).

In fact many subclasses of \(T \) are defined and studied to investigate coefficient estimates, extreme points, convolution properties and closure properties etc. suitably choosing \(\Phi, \Psi, \gamma \) and \(k \).

In this paper, we obtain integral means inequalities for functions \(f(z) \in UT(\Phi, \Psi, \gamma, k) \) and also we state integral means results for the classes studied in [21, 1, 22, 16, 4] as corollaries.

For analytic functions \(g(z) \) and \(h(z) \) with \(g(0) = h(0) \), \(g(z) \) is said to be subordinate to \(h(z) \) if there exists an analytic function \(w(z) \) so that \(w(0) = 0, |w(z)| < 1 \) (\(z \in \mathcal{U} \)) and \(g(z) = h(w(z)) \), we denote this subordination by \(g(z) \prec h(z) \).

To prove our main results, we need the following lemmas.

Lemma 1.1 ([3]). A function \(f(z) \in UT(\Phi, \Psi, \gamma, k) \) for \(\gamma(-1 \leq \gamma < 1) \) and \(k(k \geq 0) \) if and only if

\[
\sum_{n=2}^{\infty} [((1+k)\lambda_n - (\gamma + k)\mu_n] a_n \leq 1 - \gamma.
\]

The result is sharp with the extremal functions

\[
f_n(z) = z - \frac{1-\gamma}{\sigma(\gamma, k, n)} z^n, \quad n \geq 2
\]
where \(\sigma(\gamma, k, n) = (1 + k)\lambda_n - (\gamma + k)\mu_n, \gamma(-1 \leq \gamma < 1), k(k \geq 0) \) and \(n \geq 2 \).

Lemma 1.2 ([8]). If the functions \(f(z) \) and \(g(z) \) are analytic in \(U \) with \(g(z) \prec f(z) \) then

\[
(1.3) \quad \int_0^{2\pi} |g(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \quad \eta > 0, \quad z = re^{i\theta} \quad \text{and} \quad 0 < r < 1.
\]

2 Integral mean

Applying Lemma 1.1 and Lemma 1.2, we prove the following theorem.

Theorem 2.1. Let \(\eta > 0 \). If \(f(z) \in UT(\Phi, \Psi, \gamma, k), -1 \leq \gamma < 1, k \geq 0 \) and \(\{\sigma(\gamma, k, n)\}_{n=2}^{\infty} \) is non-decreasing sequence, then for \(z = re^{i\theta} \) and \(0 < r < 1 \), we have

\[
(2.1) \quad \int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |f_2(re^{i\theta})| \eta d\theta
\]

where \(f_2(z) = z - \frac{1 - \gamma}{\sigma(\gamma, k, 2)} z^2 \).

Proof. Let \(f(z) \) of the form (1.2) and \(f_2(z) = z - \frac{(1 - \gamma)}{\sigma(\gamma, k, 2)} z^2 \), then we must show that

\[
\int_0^{2\pi} \left| 1 - \sum_{n=2}^{\infty} a_n z^{n-1} \right| \eta d\theta \leq \int_0^{2\pi} \left| 1 - \frac{(1 - \gamma)}{\sigma(\gamma, k, 2)} z \right| \eta d\theta.
\]

By Lemma 1.2, it suffices to show that

\[
1 - \sum_{n=2}^{\infty} a_n z^{n-1} \prec 1 - \frac{1 - \gamma}{\sigma(\gamma, k, 2)} z
\]
Setting

\begin{equation}
1 - \sum_{n=2}^{\infty} a_n z^{n-1} = 1 - \frac{1 - \gamma}{\sigma(\gamma, k, 2)} w(z).
\end{equation}

From (2.2) and (1.1), we obtain

\[|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\sigma(\gamma, k, 2)}{1 - \gamma} a_n z^{n-1} \right| \leq |z| \sum_{n=2}^{\infty} \frac{\sigma(\gamma, k, n)}{1 - \gamma} a_n \leq |z| < 1. \]

This completes the proof of the Theorem 2.1.

By taking different choices of \(\Phi, \Psi, \gamma \) and \(k \) in the above theorem, we can state the following integral means results for various subclasses studied earlier [21, 1, 22, 16, 4].

Corollary 2.2. Let \(\eta > 0 \). If \(f(z) \in UT\left(\frac{z + z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, 0, 1\right) = UCT \), then for \(z = re^{i\theta}; 0 < r < 1 \), we have

\begin{equation}
\int_{0}^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_{0}^{2\pi} |g_2(re^{i\theta})| \eta d\theta
\end{equation}

where \(g_2(z) = z - \frac{z^2}{6} \).

Corollary 2.3. Let \(\eta > 0 \). If \(f(z) \in UT\left(\frac{z + z^2}{(1-z)^3}, \frac{z}{(1-z)^2}, 0, k\right) = UCT(k) \) and \(k \geq 0 \), then for \(z = re^{i\theta}; 0 < r < 1 \), we have

\begin{equation}
\int_{0}^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_{0}^{2\pi} |g_2(re^{i\theta})| \eta d\theta
\end{equation}

where \(g_2(z) = z - \frac{z^2}{2(k+2)} \).
Corollary 2.4. Let $\eta > 0$. If $f(z) \in UT \left(\frac{z + z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, \gamma, 1 \right) = UCT(\gamma)$ and $-1 \leq \gamma < 1$, then for $z = re^{i\theta}; 0 < r < 1$, we have

$$
\int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |g_2(re^{i\theta})| \eta d\theta
$$

where $g_2(z) = z - \frac{(1-\gamma)}{2(3-\gamma)} z^2$.

Corollary 2.5. Let $\eta > 0$. If $f(z) \in UT \left(\frac{z + z^2}{(1-z)^2}, \frac{z}{1-z}, \gamma, k \right) = UCT(\gamma, k)$, $-1 \leq \gamma < 1$ and $k \geq 0$, then for $z = re^{i\theta}; 0 < r < 1$, we have

$$
\int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |g_2(re^{i\theta})| \eta d\theta
$$

where $g_2(z) = z - \frac{(1-\gamma)}{2(2-\gamma+k)} z^2$.

Corollary 2.6. Let $\eta > 0$. If $f(z) \in UT \left(\frac{z}{1-z}, \frac{z}{1-z}, \gamma, 1 \right) = TS_p(\gamma)$ and $-1 \leq \gamma < 1$, then for $z = re^{i\theta}; 0 < r < 1$, we have

$$
\int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |g_2(re^{i\theta})| \eta d\theta
$$

where $g_2(z) = z - \frac{(1-\gamma)}{(3-\gamma)} z^2$.

Corollary 2.7. Let $\eta > 0$. If $f(z) \in UT \left(\frac{z}{1-z}, \frac{z}{1-z}, \gamma, k \right) = S_pT(\gamma, k)$, $-1 \leq \gamma < 1$ and $k \geq 0$, then for $z = re^{i\theta}; 0 < r < 1$, we have

$$
\int_0^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_0^{2\pi} |g_2(re^{i\theta})| \eta d\theta
$$

where $g_2(z) = z - \frac{(1-\gamma)}{(2-\gamma+k)} z^2$.

By taking $\gamma = \frac{1+\beta-2\alpha}{2(1-\alpha)}$ and $k = 0$ in Theorem 2.1 we get the following result of Frasin and Darus [4].
Corollary 2.8. Let $\eta > 0$. If $f(z) \in UT(\Phi, \Psi, \frac{1+\beta-2\alpha}{2(1-\alpha)}, 0) = B_T(\Phi, \Psi, \alpha, \beta)$, $0 \leq \beta < 1$ and $0 \leq \alpha < 1$, then for $z = re^{i\theta}$, $0 < r < 1$, we have

\[\int_{0}^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_{0}^{2\pi} |g_2(re^{i\theta})| \eta d\theta\]

where $g_2(z) = z - \frac{(1-\beta)}{\psi(\alpha, \beta, 2)} z^2$ and $\psi(\alpha, \beta, 2) = 2(1-\alpha)\lambda_2 - (1 + \beta - 2\alpha)\mu_2$.

Corollary 2.9. Let $\eta > 0$. If $f(z) \in UT\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}, \gamma, 0\right) = S_T^+(\gamma)$ and $\gamma \geq 0$, then for $z = re^{i\theta}$, $0 < r < 1$, we have

\[\int_{0}^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_{0}^{2\pi} |g_2(re^{i\theta})| \eta d\theta\]

where $g_2(z) = z - \frac{1-\gamma}{2-\gamma} z^2$.

Corollary 2.10. Let $\eta > 0$. If $f(z) \in UT\left(\frac{z+z^2}{(1-z)^3}, \frac{z}{(1-z)^2}, \gamma, 0\right) = K_T(\gamma)$, and $\gamma \geq 0$, then for $z = re^{i\theta}$, $0 < r < 1$, we have

\[\int_{0}^{2\pi} |f(re^{i\theta})| \eta d\theta \leq \int_{0}^{2\pi} |g_2(re^{i\theta})| \eta d\theta\]

where $g_2(z) = z - \frac{1-\gamma}{2(2-\gamma)} z^2$.

Remark 2.11. If we take $\gamma = 0$ in $S_T^+(\gamma)$ of Corollary 2.9 and $K_T(\gamma)$ of Corollary 2.10, we get the integral means results obtained by Silverman [17].

3 Fractional Calculus

Many essentially equivalent definitions of fractional calculus (that is fractional derivatives and fractional integrals) have been given in the literature (cf., e.g., [2],[9],[11], [14], [15], [18]and[19]). We find it to be convenient to
recall here the following definitions which are used earlier by Owa [10](and, subsequently, by Srivastava and Owa [19]).

Definition 3.1. The fractional integral of order ξ is defined, for a function $f(z)$, by

\begin{equation}
D_{z}^{-\xi}f(z) = \frac{1}{\Gamma(\xi)} \int_{0}^{z} \frac{f(\zeta)}{(z - \zeta)^{1-\xi}} d\zeta \quad (\xi > 0),
\end{equation}

where the function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of the function $(z - \zeta)^{\xi-1}$ is removed by requiring the function $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

Definition 3.2. The fractional derivative of order ξ is defined, for a function $f(z)$, by

\begin{equation}
D_{z}^{\xi}f(z) = \frac{1}{\Gamma(-\xi)} \frac{d}{dz} \int_{0}^{z} \frac{f(\zeta)}{(z - \zeta)^{1-\xi}} d\zeta \quad (0 \leq \xi < 1),
\end{equation}

where the function $f(z)$ is constrained, and the multiplicity of the function $(z - \zeta)^{-\xi}$ is removed as in Definition 3.1.

Definition 3.3. Under the hypotheses of Definition 3.2, the fractional derivative of order $n + \lambda$ is defined by

\begin{equation}
D_{z}^{m+\xi}f(z) = \frac{d^{m}}{dz^{m}} D_{z}^{\xi}f(z) \quad (0 \leq \xi < 1; \ m \in \mathbb{N}_0).
\end{equation}

Remark 3.4. From Definition 3.2, we have $D_{z}^{0}f(z) = f(z)$, which in view of Definition 3.3 yields $D_{z}^{m+0}f(z) = \frac{d^{m}}{dz^{m}} D_{z}^{0}f(z) = f^{(m)}(z)$. Thus, $\lim_{\xi \to 0} D_{z}^{-\xi}f(z) = f(z)$ and $\lim_{\xi \to 0} D_{z}^{1-\xi}f(z) = f'(z)$.

We need the following definition of fractional integral operator given by Srivastava, Saigo and Owa[20].
Definition 3.5 For real number $\eta > 0$, μ and δ, the fractional integral operator $I_{0, z}^{\eta, \mu, \delta}$ is defined by

\begin{equation}
I_{0, z}^{\eta, \mu, \delta} f(z) = \frac{z^{-\eta - \mu}}{\Gamma(\eta)} \int_{0}^{z} (z - t)^{\eta - 1} F(\eta + \mu, -\delta; \eta; 1 - t/z) f(t) \, dt,
\end{equation}

where a function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin with the order

$$f(z) = O(|z| \varepsilon) \quad (z \to 0),$$

with $\varepsilon > \max\{0, \mu - \delta\} - 1$. Here $F(a, b; c; z)$ is the Gauss hypergeometric function defined by

\begin{equation}
F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} z^n,
\end{equation}

where $(\nu)_n$ is the Pochhammer symbol defined by

\begin{equation}
(\nu)_n = \frac{\Gamma(\nu + n)}{\Gamma(\nu)} = \begin{cases}
1 & (n = 0) \\
\nu(\nu + 1)(\nu + 2) \cdots (\nu + n - 1) & (n \in \mathbb{N})
\end{cases}
\end{equation}

and the multiplicity of $(z - t)^{\eta - 1}$ is removed by requiring $\log (z - t)$ to be real when $z - t > 0$.

Remark 3.4. For $\mu = -\eta$, we note that

$$I_{0, z}^{\eta, -\eta, \delta} f(z) = D^{-\eta}_{z} f(z).$$

In order to prove our result for the fractional integral operator, we have to recall here the following lemma due to Srivastava, Saigo and Owa [20].
Lemma 3.7. If $\eta > 0$ and $n > \mu - \delta - 1$, then

\begin{equation}
I_{0,z}^{\eta,\mu,\delta} z^n = \frac{\Gamma(n+1)\Gamma(n-\mu+\delta+1)}{\Gamma(n-\mu+1)\Gamma(n+\eta+\delta+1)} z^{n-\mu}.
\end{equation}

With aid of Lemma 3.7, we prove

Theorem 3.8. Let $\eta > 0$, $\mu < 2$, $\eta + \delta > -2$, $\mu - \delta < 2$, $\mu(\eta + \delta) \leq 3\eta$. Let the function $f(z)$ defined by (1.2) be in the class $UT(\Phi, \Psi, \gamma, k)$. If \(\{\sigma(\gamma, k, n)\}_{n=2}^{\infty} \) is a non-decreasing sequence. Then we have

\begin{equation}
\left| I_{0,z}^{\eta,\mu,\delta} f(z) \right| \geq \frac{\Gamma(2-\mu+\delta)}{\Gamma(2-\mu)\Gamma(2+\eta+\delta)} \left| z \right|^{1-\mu} \left(1 - \frac{2(1-\gamma)(2-\mu+\delta)}{(2-\mu)(2+\eta+\delta)} \sigma(\gamma, k, 2) \left| z \right| \right)
\end{equation}

and

\begin{equation}
\left| I_{0,z}^{\eta,\mu,\delta} f(z) \right| \leq \frac{\Gamma(2-\mu+\delta)}{\Gamma(2-\mu)\Gamma(2+\eta+\delta)} \left| z \right|^{1-\mu} \left(1 + \frac{2(1-\gamma)(2-\mu+\delta)}{(2-\mu)(2+\eta+\delta)} \sigma(\gamma, k, 2) \left| z \right| \right)
\end{equation}

for $z \in U_0$, where

\begin{equation}
U_0 = \begin{cases}
U & (\mu \leq 1), \\
U - \{0\} & (\mu > 1).
\end{cases}
\end{equation}

The equalities in (3.8) and (3.9) are attained for the function $f(z)$ given by

\begin{equation}
f(z) = z - \frac{2(1-\gamma)(2-\mu+\delta)}{(2-\mu)(2+\eta+\delta)} \sigma(\gamma, k, 2) z^2.
\end{equation}

Proof. By using Lemma 3.7, we have
$I_{0,z}^{\eta,\mu,\delta} f(z) = \frac{\Gamma(2-\mu+\delta)}{\Gamma(2-\mu)\Gamma(2+\eta+\delta)} z^{1-\mu}$

(3.12) \[-\sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(n-\mu+\delta+1)}{\Gamma(n-\mu+1)\Gamma(n+\eta+\delta+1)} a_n z^{n-\mu} \quad (z \in U_0).\]

Letting

$G(z) = \frac{\Gamma(2-\mu)\Gamma(2+\eta+\delta)}{\Gamma(2-\mu+\delta)} z^{\mu I_{0,z}^{\eta,\mu,\delta} f(z)}$

(3.13) \[= z - \sum_{n=2}^{\infty} g(n) a_n z^n,\]

where

(3.14) \[g(n) = \frac{(2-\mu+\delta)_{n-1}(1)_n}{(2-\mu)_{n-1}(2+\eta+\delta)_{n-1}} \quad (n \geq 2),\]

we can see that the function $g(k)$ is non-increasing for integers $n(n \geq 2)$, and thus we have

(3.15) \[0 < g(n) \leq g(2) = \frac{2(2-\mu+\delta)}{(2-\mu)(2+\eta+\delta)}.\]

From Lemma 1.1, we obtain

(3.16) \[\sigma(\gamma, k, 2) \sum_{n=2}^{\infty} a_n \leq \sum_{n=2}^{\infty} \sigma(\gamma, k, n) a_n \leq 1 - \gamma\]
Hence, using (3.15) and (3.16), we have

\[(3.17)\]

\[|G(z)| \geq |z| - g(2)|z|^2 \sum_{n=2}^{\infty} a_n \geq |z| - \frac{2(1-\gamma)(2 - \mu + \delta)}{(2 - \mu)(2 + \eta + \delta)\sigma(\gamma, k, 2)} |z|^2,
\]

and

\[(3.18)\]

\[|G(z)| \leq |z| + g(2)|z|^2 \sum_{n=2}^{\infty} a_n \leq |z| + \frac{2(1-\gamma)(2 - \mu + \delta)}{(2 - \mu)(2 + \eta + \delta)\sigma(\gamma, k, 2)} |z|^2,
\]

for \(z \in U_0\), where \(U_0\) is defined by (3.10). This completes the proof Theorem 3.8.

By using the same proof as in Theorem 3.8, we can prove

Theorem 3.9. Let the function \(f(z)\) be defined by (1.2) be in the class \(UT(\Phi, \Psi, \gamma, k)\). If \(\{\sigma(\gamma, k, n)/n\}_{n=2}^{\infty}\) is a non-decreasing sequence. Then we have

\[(3.19)\]

\[
\left|I_{0,z}^{\eta,\mu,\delta} f(z)\right| \geq \frac{\Gamma(2 - \mu + \delta)}{\Gamma(2 - \mu)\Gamma(2 + \eta + \delta)} \frac{|z|^{1-\mu}}{1 - \frac{4(1-\gamma)(2 - \mu + \delta)}{(2 - \mu)(2 + \eta + \delta)\sigma(\gamma, k, 2)} |z|},
\]

and

\[(3.20)\]

\[
\left|I_{0,z}^{\eta,\mu,\delta} f(z)\right| \leq \frac{\Gamma(2 - \mu + \delta)}{\Gamma(2 - \mu)\Gamma(2 + \eta + \delta)} \frac{|z|^{1-\mu}}{1 + \frac{4(1-\gamma)(2 - \mu + \delta)}{(2 - \mu)(2 + \eta + \delta)\sigma(\gamma, k, 2)} |z|},
\]

for \(z \in U_0\), where \(U_0\) is defined by (3.10). The equalities in (3.19) and (3.20) are attained for the function \(f(z)\) given by (3.11).

Taking \(\mu = -\eta = -\xi\) Theorem 3.8, we get
Corollary 3.10. Let the function $f(z)$ defined by (1.2) be in the class $U\Phi(\Phi, \Psi, \gamma, k)$. If $\{\sigma(\gamma, k, n)\}_{n=2}^{\infty}$ is a non-decreasing sequence. Then we have

\begin{equation}
|D^{-\xi} f(z)| \geq \frac{|z|^{1+\xi}}{\Gamma(2 + \xi)} \left(1 - \frac{2(1 - \gamma)}{(2 + \xi)\sigma(\gamma, k; 2)} |z| \right)
\end{equation}

and

\begin{equation}
|D^{-\xi} f(z)| \leq \frac{|z|^{1+\xi}}{\Gamma(2 + \xi)} \left(1 + \frac{2(1 - \gamma)}{(2 + \xi)\sigma(\gamma, k; 2)} |z| \right)
\end{equation}

for $\xi > 0, z \in U$. The result is sharp for the function

\begin{equation}
D^{-\xi} f(z) = \frac{|z|^{1+\xi}}{\Gamma(2 + \xi)} \left(1 - \frac{2(1 - \gamma)}{(2 + \xi)\sigma(\gamma, k; 2)} |z| \right)
\end{equation}

Taking $\mu = -\eta = \xi$ in Theorem 3.9, we get

Corollary 3.11. Let the function $f(z)$ defined by (1.2) be in the class $U\Phi(\Phi, \Psi, \gamma, k)$. If $\{\sigma(\gamma, k, n)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence. Then we have

\begin{equation}
|D^{\xi} f(z)| \geq \frac{|z|^{1-\xi}}{\Gamma(2 - \xi)} \left(1 - \frac{4(1 - \gamma)}{(2 - \xi)\sigma(\gamma, k; 2)} |z| \right)
\end{equation}

and

\begin{equation}
|D^{\xi} f(z)| \leq \frac{|z|^{1-\xi}}{\Gamma(2 - \xi)} \left(1 + \frac{4(1 - \gamma)}{(2 - \xi)\sigma(\gamma, k; 2)} |z| \right)
\end{equation}

for $0 \leq \xi < 1, z \in U$. The result is sharp for the function given by (3.23).
Letting $\xi = 0$ in Corollary 3.10, we have

Corollary 3.12 ([3]). Let the function $f(z)$ defined by (1.2) be in the class $UT(\Phi, \Psi, \gamma, k)$. If $\{\sigma(\gamma, k, n)\}_{n=2}^{\infty}$ is a non-decreasing sequence. Then we have

\begin{equation}
1 - \frac{1 - \gamma}{\sigma(\gamma, k, 2)} |z| \leq |f(z)| \leq 1 + \frac{1 - \gamma}{\sigma(\gamma, k, 2)} |z|
\end{equation}

for $\xi > 0$, $z \in U$. The result is sharp for the function

\begin{equation}
f(z) = z - \frac{1 - \gamma}{\sigma(\gamma, k, 2)} z^{2}.
\end{equation}

Letting $\xi \to 1$ in Corollary 3.11, we have

Corollary 2.7 ([3]). Let the function $f(z)$ defined by (1.2) be in the class $UT(\Phi, \Psi, \gamma, k)$. If $\{\sigma(\gamma, k, n)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence. Then we have

\begin{equation}
1 - \frac{2(1 - \gamma)}{\sigma(\gamma, k, 2)} |z| \leq |f'(z)| \leq 1 + \frac{2(1 - \gamma)}{\sigma(\gamma, k, 2)} |z|
\end{equation}

for $0 \leq \xi < 1$, $z \in U$. The result is sharp for the function given by (3.27).

References

Department of Mathematics,
Al al-Bayt University,
P.O. Box: 130095 Mafraq, Jordan.
E-mail address: bafrasin@yahoo.com.

School of Science and Humanities,
Vellore Institute of Technology, Deemed University,
Vellore - 632014, India.
E-mail address: gmsmoorthy@yahoo.com

Department of Mathematics,
Adhiyamaan College of Engineering,
Hosur - 635109, India.
E-mail address: nmagi_2000@yahoo.co.in