INTERACTION OF INCOMPRESSIBLE FLOW
AND A MOVING AIRFOIL

MARTIN RŮZIČKA¹, MILOSÁV FEISTAUER¹, JAROMÍR HORÁČEK², AND PETR SVÁČEK³

Abstract. The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil. A solid airfoil with two degrees of freedom can rotate around an elastic axis and oscillate in the vertical direction. The numerical simulation consists of the finite element solution of the Navier-Stokes equations coupled with a system of ordinary differential equations describing the airfoil motion. The time-dependent computational domain and a moving grid are taken into account with the aid of the Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes equations. High Reynolds numbers require the application of a suitable stabilization of the finite element discretization. Numerical tests prove that the developed method is sufficiently accurate and robust. The results are compared with experiments.

Key words. aeroelasticity, Navier-Stokes equations, arbitrary Lagrangian-Eulerian formulation, finite element method, stabilization for high Reynolds numbers

AMS subject classifications. 65M60, 76M10, 76D05

1. Introduction. The interaction of fluid flow with vibrating bodies plays a significant role in many areas of engineering. We can mention, for example, development of airplanes or turbines and some problems from civil engineering; see, e.g., [6]. In the design of airplanes the point of interest is the analysis of deformations and vibrations of wings induced by flowing air. In this paper we are concerned with numerical solution of an aeroelastic problem of two-dimensional viscous incompressible flow over an airfoil with two degrees of freedom in a wind tunnel. The airfoil is represented by a solid body, which can perform vertical and torsional vibrations. A mathematical model of the flow is formed by the system of two-dimensional nonstationary Navier-Stokes equations and the continuity equation, equipped with initial and mixed boundary conditions.

Due to the moving airfoil, the computational domain is time-dependent. This requires the use of a suitable technique for the simulation on a moving computational grid. Here we apply the Arbitrary Lagrangian-Eulerian (ALE) method [11].

The flow problem is discretized by the stabilized finite element method, which leads to a large system of nonlinear algebraic equations. We overcome the nonlinearity by the use of the Oseen linearization, resulting in a sequence of linear systems of saddle-point type. They are solved by the direct solver UMFPACK [3]. The numerical results are compared with wind tunnel measurements.

2. Mathematical model. We consider two-dimensional nonstationary viscous incompressible flow past a vibrating airfoil inserted into a channel (wind tunnel) in a time interval $[0, T]$, where $T > 0$. The symbol Ω_t denotes the computational domain occupied by the fluid at time t. The boundary $\partial \Omega_t$ of the domain Ω_t consists of mutually disjoint sets Γ_D, Γ_O and Γ_W, on which different types of boundary conditions are prescribed. By Γ_D we denote impermeable walls and the inlet, through which the fluid flows into the domain Ω_t, Γ_O denotes the outlet, where the fluid flows out and Γ_W is the boundary of the profile at the time t. In
contrast to Γ_W, we assume that Γ_D and Γ_O are independent of time. The flow is characterized by the velocity field $u = u(x, t)$, and the kinematic pressure $p = p(x, t)$, for $x \in \Omega_t$ and $t \in [0, T]$. The kinematic pressure is defined as p/ρ, where P is the pressure and $\rho > 0$ is the constant fluid density. The motion of the profile is described by functions $\alpha(t)$, representing the rotation around the elastic axis TR, and $H(t)$, denoting the vertical displacement; see Figure 2.1.

2.1. ALE formulation of the Navier-Stokes equations. The time dependent computational domain can be treated with the aid of a smooth, one-to-one ALE mapping [11]

\begin{equation}
A_t : \Omega_0 \mapsto \Omega_t, \quad X \mapsto x(X, t) = A_t(X), \quad t \in [0, T].
\end{equation}

The coordinates of points $x \in \Omega_t$ are called spatial coordinates, the coordinates of points $X \in \Omega_0$ are called ALE coordinates or reference coordinates. The ALE mapping reflects the deformation of the computational domain; see Figure 2.2.

We define the domain velocity in the following way

\begin{equation}
\tilde{w}(X, t) = \frac{\partial}{\partial t} x(X, t).
\end{equation}

This velocity can be expressed in spatial coordinates as

\begin{equation}
w(x, t) = \tilde{w}(A_t^{-1}(x), t).
\end{equation}

Let us consider a function $f = f(x, t), x \in \Omega_t, t \in [0, T], f(x, t) \in \mathbb{R}$, where \mathbb{R} is the set of real numbers. Let $f(X, t) = f(A_t(X), t)$. We define the ALE derivative of the function f by

\begin{equation}
\frac{D^A}{Dt} f(x, t) = \frac{\partial f}{\partial t}(X, t), \quad X = A_t^{-1}(x).
\end{equation}
The application of the chain rule gives

\[\frac{D^A f}{Dt} = \frac{\partial f}{\partial t} + \mathbf{w} \cdot \nabla f. \]

By using this relation we can obtain the Navier-Stokes equations in the form

\[\frac{D^A u}{Dt} + [(u - \mathbf{w}) \cdot \nabla] u + \nabla p - \nu \Delta u = 0 \quad \text{in} \quad \Omega, \]

\[\text{div} u = 0 \quad \text{in} \quad \Omega. \]

The symbol \(\nu \) denotes the kinematic viscosity of the fluid. We assume that \(\nu > 0 \) is constant.

2.2. Equations for the moving airfoil. The equations of airfoil motion are derived from the Lagrange equations for the generalized coordinates \(H \) and \(\alpha \). These equations have the form [6]

\[\mathbb{K} \dot{d}(t) + \mathbb{D} \dot{d}(t) + \mathbb{M} \ddot{d}(t) = \mathbf{f}(t), \]

where the stiffness matrix \(\mathbb{K} \), the viscous damping \(\mathbb{D} \) and the mass matrix \(\mathbb{M} \) have the form

\[\mathbb{K} = \begin{pmatrix} k_{HH} & k_{H\alpha} \\ k_{\alpha H} & k_{\alpha\alpha} \end{pmatrix}, \quad \mathbb{D} = \begin{pmatrix} D_{HH} & D_{H\alpha} \\ D_{\alpha H} & D_{\alpha\alpha} \end{pmatrix}, \quad \mathbb{M} = \begin{pmatrix} m & S_{H} \\ S_{\alpha} & I_{\alpha} \end{pmatrix}. \]

The force vector \(\mathbf{f} \) and the generalized coordinates \(\dot{d} \) read

\[\mathbf{f}(t) = \begin{pmatrix} -\mathcal{F}(t) \\ \mathcal{M}(t) \end{pmatrix}, \quad \dot{d}(t) = \begin{pmatrix} H(t) \\ \alpha(t) \end{pmatrix}. \]

The symbol \(\mathcal{F} \) stands for the component of the aerodynamic force acting on the profile in the vertical direction, \(\mathcal{M} \) is the torsional aerodynamic moment with respect to the elastic
axis, \(D_{HH}, D_{H\alpha}, D_{\alpha\alpha}, D_{\alpha H} \) are the coefficients of structural damping. \(S_\alpha, I_\alpha, m \) and \(k_{HH}, k_{H\alpha}, k_{\alpha\alpha}, k_{\alpha H} \) denote the static moment around the elastic axis TR, the moment of inertia around TR, the mass of the profile and the stiffnesses of the profile elastic support. The force \(F \) and moment \(M \) acting on the airfoil are given by the relations

\[
F = -\ell \int_{\Gamma_{W}} \sum_{j=1}^{2} T_{2j} n_j \, ds,
\]

\[
M = \ell \int_{\Gamma_{W}} \sum_{i,j=1}^{2} T_{ij} n_j (-1)^i (x_{1+\delta_{i1}} - x_{1+\delta_{i1}}^{TR}) \, ds.
\]

Here \(\ell \) is the airfoil depth in the direction orthogonal to the plane \(x_1, x_2 \), representing the length of a wing segment in consideration. Further, \(n \) is the unit outer normal to \(\partial \Omega_t \) on \(\Gamma_{W_1} \), \(\delta_{ij} \) is the Kronecker symbol, i.e.,

\[
\delta_{ij} = 1 \quad \text{for} \quad i = j, \quad \text{and} \quad \delta_{ij} = 0 \quad \text{for} \quad i \neq j,
\]

\(x_1, x_2 \) are the coordinates of points on \(\Gamma_{W_i}, x_i^{TR} \), \(i = 1, 2 \), are the coordinates of the elastic axis \(x^{TR} \), and

\[
T_{ij} = \rho \left[-p \delta_{ij} + \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right].
\]

2.3. Initial and boundary conditions.**

The Navier-Stokes equations are completed by the initial condition

\[
u(x, 0) = u_0, \quad x \in \Omega_0,
\]

and the following boundary conditions. On \(\Gamma_D \) we prescribe the Dirichlet boundary condition

\[
u|_{\Gamma_D} = u_D.
\]

On the outlet \(\Gamma_O \) we consider the so-called do-nothing boundary condition

\[
-p - p_{ref} n + \nu \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma_O,
\]

where \(p_{ref} \) is a given reference pressure. On \(\Gamma_{W_i} \), we consider the condition

\[
u|_{\Gamma_{W_i}} = \nu|_{\Gamma_{W_i}}.
\]

Moreover, we equip system (2.7) with the initial conditions

\[
\alpha(0) = \alpha_0, \quad \dot{\alpha}(0) = \alpha_1, \\
H(0) = H_0, \quad \dot{H}(0) = H_1,
\]

where \(\alpha_0, \alpha_1, H_0, H_1 \) are input parameters of the model. The initial value problem (2.7), (2.15) is transformed to a problem for a first-order system and then discretized by the fourth-order Runge-Kutta method.

The interaction of a fluid and an airfoil consists in the solution of the flow problem (2.6), (2.11)–(2.14) coupled with the structural model (2.7) and (2.15). In what follows, we shall be concerned with the discretization of the flow problem and describe the algorithm for the numerical solution of the complete fluid-structure interaction problem.

3.1. Discretization in time. We construct an equidistant partition of the time interval
$[0, T]$, formed by time instants $0 = t_0 < t_1 < \cdots < T$, $t_k = k\tau$, where $\tau > 0$ is a time step.
We use the approximation $u(t_n) \approx u^n$, $p(t_n) \approx p^n$ of the exact solution and $w(t_n) \approx w^n$
of the domain velocity at time t_n. On each time level t_{n+1}, under the assumption that the
domain $\Omega_{t_{n+1}}$ is already known, using the second-order backward difference formula, we
we obtain the problem to find functions $u^{n+1} : \Omega_{t_{n+1}} \mapsto \mathbb{R}^2$ and $p^{n+1} : \Omega_{t_{n+1}} \mapsto \mathbb{R}$, such that

$$\frac{3u^{n+1} - 4\hat{u}^n + \hat{u}^{n-1}}{2\tau} + ((u^{n+1} - w^{n+1}) \cdot \nabla) u^{n+1} - \nu \Delta u^{n+1} + \nabla p^{n+1} = 0,$$

(3.1)

This system is considered with the boundary conditions (2.12), (2.13), and (2.14). The symbols \hat{u}^n and \hat{u}^{n-1} mean the functions u^n and u^{n-1} transformed from the domain Ω_{t_n} and
$\Omega_{t_{n-1}}$ to the domain $\Omega_{t_{n+1}}$ using the ALE mapping. This means that $\hat{u}^i = u^i \circ A_{t_i} \circ A_{t_{i-1}}^{-1}$.

3.2. Discretization in space. The starting point for the approximate solution is the
weak formulation of problem (3.1). Because of simplicity we shall use the notation $\Omega = \Omega_{t_{n+1}}$, $\mathbf{u} = \mathbf{u}^{n+1}$, $\mathbf{p} = p^{n+1}$ and $\Gamma_W = \Gamma_{W_{t_{n+1}}}$. The appropriate function spaces are

\begin{equation}
W = (H^1(\Omega))^2, \quad X = \{v \in W;\; v|_{\Gamma_\partial \cup \Gamma_W} = 0\}, \quad M = L^2(\Omega).
\end{equation}

We introduce the forms

\begin{align}
(a(U^*, U, V) &= \frac{3}{2\tau} (\mathbf{u}, v) + \nu (\nabla \mathbf{u}, \nabla v) + \left((\mathbf{u}^* - \mathbf{w}^{n+1}) \cdot \nabla\right) \mathbf{u}, v) \\
&\quad - (p, \nabla \cdot v) + (\nabla \cdot \mathbf{u}, q), \\
f(V) &= \frac{1}{2\tau} (4\hat{u}^n - \hat{u}^{n-1}, v) - \int_{\Gamma_\partial} p_{ref} v \cdot n \, ds,
\end{align}

where $U = (\mathbf{u}, p) \in W \times M$, $U^* = (\mathbf{u}^*, p) \in W \times M$, $V = (v, q) \in X \times M$, and (\cdot, \cdot) denotes the scalar product in the spaces $L^2(\Omega)$, $[L^2(\Omega)]^2$, and $[L^2(\Omega)]^{2 \times 2}$.

The weak solution is defined as a couple $U = (\mathbf{u}, p)$, such that it satisfies the conditions

\begin{equation}
U \in W \times M, \quad a(U, U, V) = f(V), \quad \forall V = (v, q) \in X \times M,
\end{equation}

and \mathbf{u} satisfies the boundary conditions (2.12) and (2.14).

Now we define an approximate solution. The spaces W, X, M are approximated by their
finite-dimensional subspaces W_h, X_h, M_h, $h \in (0, h_0)$, $h_0 > 0$, where

\begin{equation}
X_h = \{v \in W_h;\; v|_{\Gamma_\partial \cup \Gamma_W} = 0\}.
\end{equation}

The approximate solutions is defined as a couple $U_h = (\mathbf{u}_h, p_h) \in W_h \times M_h$, such that

\begin{equation}
(a(U_h, U_h, V_h) = f(V_h), \quad \forall V_h = (v_h, q_h) \in X_h \times M_h,
\end{equation}

and \mathbf{u}_h satisfies a suitable approximation of the boundary conditions (2.12) and (2.14).

In the construction of the spaces W_h, M_h we assume that the domain Ω is a polygonal
approximation of the computational domain at time t_{n+1}. By $\mathcal{T}_h (h \in (0, h_0))$ we denote a
triangulation of Ω with standard properties from the finite element method; see, e.g., [2].
Then W_h and M_h are defined as continuous piecewise polynomial functions satisfying the
Babuška-Brezzi condition; see [1]. Here we use the well-known Taylor-Hood P^2/P^1 elements over a triangulation \mathcal{T}_h of Ω. This means that the velocity components are continuous in Ω, quadratic on each element $K \in \mathcal{T}_h$, and the pressure is continuous piecewise linear.
3.3. Stabilization of the finite element method. For high Reynolds numbers approximate solutions can contain nonphysical spurious oscillations. In order to avoid them, we shall apply the streamline-diffusion and div-div stabilization based on the forms

\begin{equation}
L_h(U^*, U, V) = \sum_{K \in T_h} \delta_K \left(\frac{3}{2\tau} \mathbf{u} - \nu \Delta \mathbf{u} + (\overline{\mathbf{u}} \cdot \nabla) \mathbf{u} + \nabla p, (\overline{\mathbf{u}} \cdot \nabla) \mathbf{v} \right)_K,
\end{equation}

\begin{equation}
F_h(V) = \sum_{K \in T_h} \delta_K \left(\frac{1}{2\tau} (4\mathbf{u}^n - \mathbf{u}^{n-1}) \cdot (\overline{\mathbf{u}} \cdot \nabla) \mathbf{v} \right)_K,
\end{equation}

\begin{equation}
P_h(U, V) = \sum_{K \in T_h} \tau_K (\nabla \cdot \mathbf{u}, \nabla \cdot \mathbf{v})_K,
\end{equation}

where

\begin{equation}
U = (\mathbf{u}, p), U^* = (\mathbf{u}^*, p), \quad V = (\mathbf{v}, q),
\end{equation}

\(\delta_K, \tau_K \geq 0\) are suitable parameters, \(\overline{\mathbf{u}} = \mathbf{u}^* - \mathbf{u}^{n+1}\) is the transport velocity, and \((\cdot, \cdot)_K\) is the scalar product in the space \(L^2(K)\) or \([L^2(K)]^2\).

The solution of the stabilized discrete problem is \(U_h = (\mathbf{u}_h, p_h) \in W_h \times M_h\), such that the component \(\mathbf{u}_h\) satisfies the boundary conditions (3.12) on \(\Gamma_D\) and (3.14) on \(\Gamma_W\), and

\begin{equation}
a_h(U_h, V_h) + L_h(U_h, V_h) + P_h(U_h, V_h) = f_h(V_h) + F_h(V_h),
\end{equation}

\[\forall V_h = (v_h, q_h) \in X_h \times M_h.\]

If we solve problem (3.8), we obtain an approximate solution at time \(t_{n+1}\), i.e., \(\mathbf{u}^{n+1}_h = \mathbf{u}_h\) and \(p^{n+1}_h = p_h\) defined in the domain \(\Omega_{t_{n+1}} = \Omega\).

Now, we describe how to choose parameters \(\delta_K\) and \(\tau_K\). We follow the works \([7]\) and \([10]\). The magnitude of the velocity field varies in different subdomains of \(\Omega\). That is why we split the domain into two subdomains. The diffusion component dominates on the first subdomain and the convective component on the second. On both subdomains we choose these parameters in a different way. The parameter \(\delta_K\) is based on the transport velocity \(\overline{\mathbf{u}}\) and the viscosity \(\nu\). We put

\begin{equation}
\delta_K = \delta^* \frac{h_K}{2 ||\overline{\mathbf{u}}||_{L^\infty(K)}},
\end{equation}

where

\begin{equation}
\delta^* = \frac{h_K ||\overline{\mathbf{u}}||_{L^\infty(K)}}{2\nu}
\end{equation}

is the so-called local Reynolds number and \(h_K\) is the size of the element \(K\) measured in the direction of \(\overline{\mathbf{u}}\). The function \(\xi(\cdot)\) is non-decreasing in dependence on \(\delta_K\) in such a way that for local convective dominance \((\delta^*_K > 1)\) \(\xi \rightarrow 1\) and for local diffusion dominance \((\delta^*_K < 1)\) \(\xi \rightarrow 0\). The parameter \(\delta^* \in (0, 1]\) is chosen suitably. The function \(\xi(\cdot)\) can be defined, e.g., by

\begin{equation}
\xi(\delta^*_K) = \min \left(\frac{\delta^*_K}{6}, 1 \right).
\end{equation}

The parameters \(\tau_K\) are defined by

\begin{equation}
\tau_K = \tau^* h_K \max_{\overline{\mathbf{u}}} \xi(R_e^*_K), \quad \tau^* \in (0, 1].
\end{equation}

In practical computations we use the values \(\delta^* = 0.025\) and \(\tau^* = 1\).
4. Simulation of the flow induced airfoil vibrations. In the solution of the complete fluid-structure interaction problem we apply the following algorithm:

1) Assume that the approximate solution \(U = (u, p_h) \) of the flow problem (3.8) at time levels \(t_{n-1} \) and \(t_n \) is known and the force \(F \) and torsional moment \(M \) are computed from (2.8) and (2.9).

2) Extrapolate \(F \) and \(M \) on the time interval \([t_n, t_{n+1}]\).

3) Compute the displacement \(H \) and angle \(\alpha \) at time \(t_{n+1} \) as the solution of system (2.7).

4) Determine the position of the airfoil at time \(t_{n+1} \), the domain \(\Omega_{t_{n+1}} \), the ALE mapping \(A_{t_{n+1}} \) and the domain velocity \(w^{n+1} \).

5) Solve the discrete stabilized problem (3.8) at time \(t_{n+1} \).

6) Compute \(F \) and \(M \) from (2.8) and (2.9) at time \(t_{n+1} \) and interpolate \(F \) and \(M \) on \([t_n, t_{n+1}]\).

7) Is a higher accuracy needed? YES: go to 3); NO: \(n := n + 1 \) and go to 2).

The nonlinear flow problem (3.8) is solved with the aid of the Oseen iterations

\[
\begin{align*}
\alpha(U_h^{(k)}, U_h^{(k+1)}, V_h) + \mathcal{L}_h(U_h^{(k)}, U_h^{(k+1)}, V_h) + \mathcal{P}_h(U_h^{(k+1)}, V_h) &= f(V_h) + \mathcal{F}_h(V_h) \quad \text{for all } V_h \in X_h \times M_h,
\end{align*}
\]

where \(U_h^{(0)} \) is defined on the basis of the approximate solution on the previous time level.

The ALE mapping is constructed in such a way that the reference domain \(\Omega_0 \) is divided in three subdomains by two ellipses with center at the elastic axis of the airfoil. In the interior ellipse containing the airfoil the ALE mapping is defined as the rigid body motion, outside of the exterior ellipse the ALE mapping is identity. In the domain between both ellipses the ALE mapping is defined by interpolation.

The knowledge of the ALE mapping at time instants \(t_{n-1}, t_n, t_{n+1} \) allows us to approximate the domain velocity with the aid of the second-order backward difference formula

\[
w^{n+1}(x) = \frac{3x - 4A_{t_n}(A_{t_{n+1}}^{-1}(x)) + A_{t_{n-1}}(A_{t_{n+1}}^{-1}(x))}{2}, \quad x \in \Omega_{t_{n+1}}.
\]

5. Numerical solution. The described method was applied to the simulation of flow induced vibrations of a profile (shown in Figure 5.1) inserted into a channel (wind tunnel) in the case of the following data: \(\nu = 1.5 \cdot 10^{-5} \text{ m}^2/\text{s}, k_{HH} = 1711.6 \text{ N/m}, k_{\alpha \alpha} = 4.5 \text{ Nm/rad}, k_{H \alpha} = 0.0 \text{ N/rad}, k_{\alpha H} = 0.0 \text{ N}, m = 0.0821 \text{ kg}, S_\alpha = -0.00013 \text{ kgm}, I_\alpha = 0.000093 \text{ kgm}^2, D_{HH} = 5.0 \text{ Ns/m}, D_{\alpha \alpha} = 0.003 \text{ Nms/rad}, D_{H \alpha} = 0.0 \text{ Ns/rad}, D_{\alpha H} = 0.0 \text{ Ns/m}, \ell = 0.08 \text{ m}, c = \text{length of the profile chord} = 0.12 \text{ m}.
The computation was carried out for several values of the inlet velocity U. We define the corresponding Reynolds number by

$$Re = \frac{Ue}{\nu}. \tag{5.1}$$

The triangulation of the domain is realized by the method and software ANGENER [4], [5], which can be used for the construction of an initial isotropic triangulation and also for an anisotropic adaptive mesh refinement; see Figure 5.1.

By the numerical solution of the complete problem we obtain the velocity and pressure fields and also the time development of the displacement H and the rotation angle α. From this information we derive frequency characteristics obtained with the aid of the Fourier transform

$$G(\varphi_n) = \int_0^T g(t) e^{-2\pi i \varphi n t} dt \tag{5.2}$$

with $g = H$ or $g = \alpha$ and $\varphi_n = n\Delta \varphi \in [0, 50]$, $\Delta \varphi = 0.1$ Hz, approximated by the rectangle formula

$$G(\varphi_n) = \tau \sum_{k=0}^{N-1} g(t_k) e^{-2\pi i \varphi n t_k}. \tag{5.3}$$

Here i is the imaginary unit and N is the number of time steps in the interval $[0, T)$ with length τ.

The main vibrational frequencies f_1 and f_2 are defined in our computations as maximum points of the function $|G|$ corresponding to $g = H$ and $g = \alpha$, respectively.

The numerical simulation started by the computation of the flow velocity and pressure fields for a fixed profile in the disequilibrium position $\alpha_0 = 2^\circ$ and $H_0 = 3.6$ mm. After a short time the airfoil was released, i.e., the motion of the airfoil starts to behave according to system (2.7) with initial conditions formed by the above data $\alpha_0, H_0, \alpha_1 = 0$, and $H_1 = 0$; cf., (2.15).

In what follows we present the dynamic response $\alpha(t), H(t)$ of the fluid-structure system in time domain for different inlet flow velocities.

Inlet velocity $0 \text{ms}^{-1} - Re = 0$. For α and H we obtained the signals shown in Figure 5.2. The frequency analysis gives main frequencies of the signals 19.5 Hz and 38.7 Hz.
Inlet velocity \(40 \text{ m s}^{-1} - Re = 320000\). We obtained the results shown in Figure 5.3. The frequency analysis gives us main frequencies of the signals 19.9 Hz and 36.4 Hz.

![Graph](image1)

Figure 5.3. \(\alpha(t)\) and \(H(t)\) for the inlet velocity of the air \(40 \text{ m s}^{-1}\).

Inlet velocity \(60 \text{ m s}^{-1} - Re = 480000\). We obtained the signals shown in Figure 5.4. The frequency analysis gives us main frequencies of the signals 19.8 Hz a 36.2 Hz.

![Graph](image2)

Figure 5.4. \(\alpha(t)\) and \(H(t)\) for the inlet velocity of the air \(60 \text{ m s}^{-1}\).

Inlet velocity \(80 \text{ m s}^{-1} - Re = 640000\). The signals \(\alpha\) and \(H\) are shown in Figure 5.5. The frequency analysis gives us only one main frequency of the signals 30.4 Hz. The second one is very hard to detect.

In all cases studied the vibration amplitudes decrease in time and the system is stable. Figure 5.6 shows the comparison of the computed main frequencies with wind tunnel experiments described in [8] and [9].

6. **Conclusion.** In this article we derived a procedure for obtaining the numerical solution of the interaction of a moving airfoil inserted in a channel with a running fluid. We used this approach for solving a particular problem, which was studied experimentally in a wind tunnel [8], [9]. The computational results show that the presented method is sufficiently robust and useful for a given type of problem. The computed and experimentally obtained main frequencies of the flow induced vibrations of the profile for several values of the inlet flow velocity are in good agreement; see Figure 5.6. A further goal will be the implementation of a turbulence model to the description of the flow and the validation of the method in situations...
with large displacements of the airfoil and a higher inlet flow velocity, when the system may lose aeroelastic stability.

Acknowledgments. This research was supported under the grant of the Grant Agency of the Academy of Sciences of the Czech Republic No. IAA200760613. It was also partly supported under the Research Plan MSM 0021620839 (M. Feistauer) of the Ministry of Education of the Czech Republic and the project No. 48607 of the Grant Agency of the Charles University in Prague (M. Růžička).

REFERENCES