**These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://www.math.psu.edu/era/.
**

**This journal is archived by the American Mathematical
Society. The master copy is available at
http://www.ams.org/era/
**

**15A30****A. A. Kirillov**

Family algebras**16P90****A. Giambruno; M. Zaicev**

Minimal varieties of algebras of exponential growth**16R10****A. Giambruno; M. Zaicev**

Minimal varieties of algebras of exponential growth**16R10****A. V. Grishin**

On non-Spechtianness of the variety of associative rings that satisfy the identity $x^{32} = 0$**20C30****Matthias Künzer**

A one-box-shift morphism between Specht modules**20J06****Alejandro Adem; Jeff H. Smith**

On spaces with periodic cohomology**22E60****A. A. Kirillov**

Family algebras**30D05****S. R. Bullett; W. J. Harvey**

Mating quadratic maps with Kleinian groups via quasiconformal surgery**30F40****S. R. Bullett; W. J. Harvey**

Mating quadratic maps with Kleinian groups via quasiconformal surgery**35Q75****David M. A. Stuart**

Solitons on pseudo-Riemannian manifolds: stability and motion**37B20****Valentin Afraimovich; Jean-René Chazottes; Benoît Saussol**

Local dimensions for Poincaré recurrences**37C10****Franz W. Kamber; Peter W. Michor**

The flow completion of a manifold with vector field**37C40****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**37C45****Valentin Afraimovich; Jean-René Chazottes; Benoît Saussol**

Local dimensions for Poincaré recurrences**37F05****S. R. Bullett; W. J. Harvey**

Mating quadratic maps with Kleinian groups via quasiconformal surgery**37F30****S. R. Bullett; W. J. Harvey**

Mating quadratic maps with Kleinian groups via quasiconformal surgery**37J35****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**37K40****David M. A. Stuart**

Solitons on pseudo-Riemannian manifolds: stability and motion**37K45****David M. A. Stuart**

Solitons on pseudo-Riemannian manifolds: stability and motion**53A10****Michael Hutchings; Frank Morgan; Manuel Ritoré; Antonio Ros**

Proof of the double bubble conjecture**53A20****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**53B10****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**53C20****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**53C22****Vladimir S. Matveev; Petar J. Topalov**

Metric with ergodic geodesic flow is completely determined by unparameterized geodesics**53C42****Michael Hutchings; Frank Morgan; Manuel Ritoré; Antonio Ros**

Proof of the double bubble conjecture**57M50****Danny Calegari**

Geometry and topology of $\mathbb{R}$-covered foliations**57R30****Franz W. Kamber; Peter W. Michor**

The flow completion of a manifold with vector field**57S30****Alejandro Adem; Jeff H. Smith**

On spaces with periodic cohomology**58G11****Brian Smith; Gilbert Weinstein**

On the connectedness of the space of initial data for the Einstein equations**58J45****David M. A. Stuart**

Solitons on pseudo-Riemannian manifolds: stability and motion**83C05****Brian Smith; Gilbert Weinstein**

On the connectedness of the space of initial data for the Einstein equations**83C10****David M. A. Stuart**

Solitons on pseudo-Riemannian manifolds: stability and motion