## Archival Version

**These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://www.math.psu.edu/era/.
**

Table of Contents
## Electronic Research Announcements of the American Mathematical Society

**Table of Contents: Volume 7, 2001**

- Hans Ulrich Besche; Bettina Eick; E. A. O'Brien;
*The groups of order at most 2000*- ERA Amer. Math. Soc.
**07** (2001), pp. 1-4.

- John Fogarty;
*On Noether's bound for polynomial invariants of a finite group*- ERA Amer. Math. Soc.
**07** (2001), pp. 5-7.

- Simon Scott;
*Relative zeta determinants and the geometry of the determinant line bundle*- ERA Amer. Math. Soc.
**07** (2001), pp. 8-16.

- Vadim Yu. Kaloshin; Brian R. Hunt;
*A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I*- ERA Amer. Math. Soc.
**07** (2001), pp. 17-27.

- Vadim Yu. Kaloshin; Brian R. Hunt;
*A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II*- ERA Amer. Math. Soc.
**07** (2001), pp. 28-36.

- V. Balaji; I. Biswas; D. S. Nagaraj;
*Principal bundles with parabolic structure*- ERA Amer. Math. Soc.
**07** (2001), pp. 37-44.

- Robert Lauter; Victor Nistor;
*On spectra of geometric operators on open manifolds and differentiable groupoid*- ERA Amer. Math. Soc.
**07** (2001), pp. 45-53.

- Stephen Doty; Anthony Giaquinto;
*Generators and relations for Schur algebras*- ERA Amer. Math. Soc.
**07** (2001), pp. 54-62.

- A. Yu. Ol'shanskii; M. V. Sapir;
*Non-amenable finitely presented torsion-by-cyclic groups*- ERA Amer. Math. Soc.
**07** (2001), pp. 63-71.

- Pablo Pedregal;
*Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design*- ERA Amer. Math. Soc.
**07** (2001), pp. 72-78.

- S. A. Krat;
*On pairs of metrics invariant under a cocompact action of a group*- ERA Amer. Math. Soc.
**07** (2001), pp. 79-86.

- Gennady G. Laptev;
*Some nonexistence results for higher-order evolution inequalities in cone-like domains*- ERA Amer. Math. Soc.
**07** (2001), pp. 87-93.

© Copyright 2001, American Mathematical Society.