## Archival Version

**These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://www.math.psu.edu/era/.
**

The flow completion of a manifold with vector field
**This journal is archived by the American Mathematical
Society. The master copy is available at
http://www.ams.org/era/
**

## The flow completion of a manifold with vector field

### Franz W. Kamber and Peter W. Michor

**Abstract.**
For a vector field $X$ on a smooth manifold $M$ there
exists a smooth but not necessarily Hausdorff manifold $M_{\mathbb{R}}$
and
a complete vector field $X_{\mathbb{R}}$ on it which is the universal
completion of $(M,X)$.

*Copyright 2000 American Mathematical Society*

**Retrieve entire article **

#### Article Info

- ERA Amer. Math. Soc.
**06** (2000), pp. 95-97
- Publisher Identifier: S 1079-6762(00)00083-4
- 2000
*Mathematics Subject Classification*. Primary 37C10, 57R30
*Key words and phrases*. Flow completion, non-Hausdorff manifolds
- Received by the editors July 27, 2000
- Posted on October 10, 2000
- Communicated by Alexandre Kirillov
- Comments (When Available)

**Franz W. Kamber**

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801

*E-mail address:* `kamber@math.uiuc.edu`

**Peter W. Michor**

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria; and: Erwin Schrödinger Institut für Mathematische Physik, Boltzmanngasse 9, A-1090 Wien, Austria

*E-mail address:* `michor@pap.univie.ac.at`

Supported by Erwin Schrödinger International Institute of Mathematical Physics, Wien, Austria. FWK was supported in part by The National Science Foundation under Grant No. DMS-9504084.
PWM was supported by `Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P~14195~MAT'

*Electronic Research Announcements of the AMS *Home page