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Abstract. Results on the inverse interval matrix, both theoretical and computational, are

surveyed. Described are, among others, formulae for the inverse interval matrix, NP-hardness of its

computation, various classes of interval matrices for which the inverse can be given explicitly, and

closed-form formulae for an enclosure of the inverse.
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1. Introduction. In our recent paper [20], we presented a survey of forty nec-

essary and sufficient conditions for regularity of interval matrices. It is now followed

by a survey of properties of the inverse interval matrix which is closely related to the

previous topic because the inverse interval matrix is only defined for regular interval

matrices.

After some preliminaries in Sections 2 and 3, the inverse interval matrix is de-

fined in Section 4. Next we introduce matrices By defined for each ±1-vector y and

demonstrate their use for inverse matrix representation (Theorem 7.1) and for estab-

lishing finite formulae for the inverse interval matrix (Theorem 8.1). Then we present

Coxson’s result [3] showing that computing the inverse interval matrix is NP-hard.

In Section 10 we show that for an interval matrix with unit midpoint the inverse

interval matrix can be given explicitly by simple formulae (Theorem 10.2). Explicit

formulae for an enclosure of the inverse of a strongly regular interval matrix are given

in Section 11. In the next four sections, we give explicit formulae for the interval

inverse of interval matrices that are either inverse sign stable (Section 12), or are of

inverse sign pattern (Section 13), or are nonnegative invertible (Section 14), or have

uniform width (Section 15). In the last Section 16, we describe available software
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for computing the inverse interval matrix or its enclosure. The Appendix contains

a MATLAB-like description of an algorithm for solving an absolute value equation

which is used in Section 6 for computation of the matrices By.

2. Notation. We use the following notation. Aij denotes the ijth entry, Ai•

the ith row and A•j the jth column of a matrix A. Matrix inequalities, as A ≤ B

or A < B, are understood componentwise. A ◦ B denotes the Hadamard (entrywise)

product of A,B ∈ R
m×n, i.e., (A ◦ B)ij = AijBij for each i, j. The minimum (or

maximum) matrix of a compact (in particular, finite) set of matrices X is defined

componentwise, i.e.,

(min{A | A ∈ X })ij = min{Aij | A ∈ X },

(max{A | A ∈ X })ij = max{Aij | A ∈ X }

for each i, j. The absolute value of a matrix A = (aij) is defined by |A| = (|aij |). For

each matrix A we define its sign matrix sgn(A) by

(sgn(A))ij =

{
1 if Aij ≥ 0,

−1 if Aij < 0

for each i, j. The same notation also applies to vectors that are considered one-column

matrices. I is the unit matrix, ej is the jth column of I, e = (1, . . . , 1)T is the vector

of all ones, and E = eeT is the matrix of all ones. Yn = {y | |y| = e} is the set of all

±1-vectors in R
n, so that its cardinality is 2n. For each y ∈ R

n we denote

Ty = diag (y1, . . . , yn) =




y1 0 . . . 0

0 y2 . . . 0
...

...
. . .

...

0 0 . . . yn


 ,

and ̺(A) is the spectral radius of A.

3. Interval matrices. Given two n × n matrices Ac and ∆, ∆ ≥ 0, the set of

matrices

A = {A | |A − Ac| ≤ ∆}

is called a (square) interval matrix with midpoint matrix Ac and radius matrix ∆.

Since the inequality |A−Ac| ≤ ∆ is equivalent to Ac −∆ ≤ A ≤ Ac + ∆, we can also

write

A = {A | A ≤ A ≤ A} = [A,A],
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where A = Ac − ∆ and A = Ac + ∆ are called the bounds of A.

Given an n × n interval matrix A, we define matrices

Ayz = Ac − Ty∆Tz (3.1)

for each y, z ∈ Yn. The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =

{
Aij if yizj = −1,

Aij if yizj = 1
(i, j = 1, . . . , n),

so that Ayz ∈ A for each y, z ∈ Yn. Since the cardinality of Yn is 2n, the cardinality

of the set of matrices {Ayz | y, z ∈ Yn} is at most 22n.

4. Definition of the inverse interval matrix. A square interval matrix A is

called regular if each A ∈ A is nonsingular, and it is said to be singular otherwise (i.e.,

if it contains a singular matrix). In particular, an interval matrix A = [Ac−∆, Ac+∆]

with

̺(|A−1
c |∆) < 1 (4.1)

is regular (Beeck [1]); interval matrices satisfying (4.1) are called strongly regular.

The inverse interval matrix is defined only for regular interval matrices.

Definition 4.1. For a regular interval matrix A we define its inverse interval

matrix A−1 = [B,B] by

B = min {A−1 | A ∈ A },

B = max{A−1 | A ∈ A }

(componentwise).

Comment. Thus, A−1 is the narrowest interval matrix enclosing the set of ma-

trices {A−1 | A ∈ A }. Instead of “inverse interval matrix”, we sometimes simply say

“interval inverse”.

5. The matrices By. First we show that regularity of an n× n interval matrix

implies the existence of 2n uniquely determined matrices.

Theorem 5.1. [15, Thm. 5.1, (A3)] For a square interval matrix A = [Ac −

∆, Ac + ∆], the following assertions are equivalent:

(i) A is regular,

(ii) for each y ∈ Yn the matrix equation

AcB − Ty∆|B| = I (5.1)

has a unique matrix solution By,
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(iii) for each y ∈ Yn the matrix equation (5.1) has a solution.

The main message here is the implication “(i)⇒(ii)”; (iii) is added for completeness.

It is useful to formulate the equation (5.1) columnwise.

Theorem 5.2. Let A be regular. Then for each y ∈ Yn and for each j ∈

{1, . . . , n} we have

(By)•j = xyj ,

where xyj is the unique solution of the equation

Acx − Ty∆|x| = ej . (5.2)

This theorem forms the basis of an algorithm for computing the By’s presented

in the next section. We have still another expression for the jth column of By by

means of the matrices Ayz introduced in (3.1).

Theorem 5.3. Let A be regular. Then for each y ∈ Yn and for each j ∈

{1, . . . , n} we have

(By)
•j =

(
A−1

yz(j)

)
•j

, (5.3)

where

z(j) = sgn((By)•j).

Since z(j) depends on j, we cannot generally state that By = A−1
yz for some z. It

may even be that B−1
y /∈ A. As a consequence of (5.3), we obtain that

(By)ij =
(
A−1

yz(j)

)
ij

(5.4)

for each y, i, j. Of course, (5.3) and (5.4) cannot be directly used for computation of

(By)•j since they contain z(j), the sign vector of the result.

6. Computation of the By’s. Theorem 5.2 shows us a way how to compute

the matrix By column-by-column provided we are able to solve an equation of the

type

Ax + B|x| = b, (6.1)

called an absolute value equation. This can be done by a finite algorithm signaccord

from [21] whose detailed MATLAB-like description is given in the Appendix. Its

syntax is

[x, S, flag] = signaccord(A,B, b),
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where A,B, b is the data of (6.1), x is a solution of (6.1) (if found), S is a singular

matrix in the interval matrix [A − |B|, A + |B| ] (if found), and flag is a verbal

description of the output ( ′solution′ or ′singular′). The behavior of the algorithm is

described in Theorem 17.1. Its important feature is that for a regular interval matrix

[A− |B|, A + |B| ] it always finds a solution to (6.1) (in infinite precision arithmetic),

which in this case is unique [21]. As reported in [21], the algorithm takes on average

about 0.11 · n steps (passes through the while loop), where n is the matrix size.

Solving the equations (5.2) for j = 1, . . . , n, we obtain an algorithm (Fig. 6.1) for

computing the matrix By for a given y.

function By = bymatrix (A, y)

for j = 1 : n

[x, S, flag] = signaccord (Ac,−Ty∆, ej);

if flag = ′singular′, By = [ ]; return

end

(By)•j = x;

end

Fig. 6.1. An algorithm for computing By.

The following theorem (unpublished) follows directly from Theorems 5.2 and 17.1.

Theorem 6.1. For each square interval matrix A and for each y ∈ Yn the

algorithm (Fig. 6.1) either finds a matrix By satisfying (5.1), or issues an empty

matrix By in which case A is singular.

It should be noted that success in computation of a single matrix By does not

guarantee regularity; it is the existence of solutions of all the equations (5.1), y ∈ Yn

that implies regularity of A (Theorem 5.1, (iii)).

7. Inverse matrix representation theorem. The following theorem, which

is of independent interest, brings us closer to the formulae for the inverse interval

matrix to be given in the next section.

Theorem 7.1. [15, Thm. 6.1] Let A be regular. Then for each A ∈ A there exist

nonnegative diagonal matrices Ly, y ∈ Yn, satisfying
∑

y∈Yn

Ly = I such that

A−1 =
∑

y∈Yn

ByLy (7.1)

holds.
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The formula (7.1) implies that for each i, j we have

(A−1)ij =
∑

y∈Yn

(By)ij(Ly)jj , (7.2)

where all the (Ly)jj ’s are nonnegative and
∑

y∈Yn

(Ly)jj = Ijj = 1. Hence, (A−1)ij

is a convex combination of the values (By)ij over all y ∈ Yn.

Using the formula (5.3), we can reformulate the representation theorem in terms

of the matrices Ayz defined in (3.1).

Theorem 7.2. [18, Thm. 1.1] Let A be regular. Then for each A ∈ A there exist

nonnegative diagonal matrices Lyz, y, z ∈ Yn, satisfying
∑

y,z∈Yn

Lyz = I such that

A−1 =
∑

y,z∈Yn

A−1
yz Lyz (7.3)

holds.

Hence, (A−1)ij is a convex combination of the values (A−1
yz )ij over all y, z ∈ Yn.

The expansion (7.3) is perhaps more clear than (7.1) because it employs explicitly

expressed matrices A−1
yz instead of rather obscure matrices By, but the number of

matrices A−1
yz is 22n compared to “only” 2n matrices By.

8. Formulae for the inverse interval matrix. Finally, using (7.2) and (5.4),

we obtain the following simply formulated, but important result.

Theorem 8.1. [15, Thm. 6.2] Let A be regular. Then its inverse A−1 = [B,B]

is given by

B = min
y∈Yn

By,

B = max
y∈Yn

By.

Similarly, from Theorem 7.2 we can derive an analogous result.

Theorem 8.2. [18, (1.3), (1.4)] Let A be regular. Then its inverse A−1 = [B,B]

is given by

B = min
y,z∈Yn

A−1
yz ,

B = max
y,z∈Yn

A−1
yz .
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The formulation of Theorem 8.2 is advantageous in that it leads us to some clues

about matrices at which bounds of the inverse interval matrix are attained.

Theorem 8.3. [18, Thm. 1.2] Let A be regular and let i, j ∈ {1, . . . , n}. Then

we have:

(i) Bij = (A−1
yz )ij for some y, z ∈ Yn satisfying

yT ◦ (A−1
yz )i• ≤ 0T , (8.1)

z ◦ (A−1
yz )

•j ≥ 0, (8.2)

(ii) Bij = (A−1
yz )ij for some y, z ∈ Yn satisfying

yT ◦ (A−1
yz )i• ≥ 0T ,

z ◦ (A−1
yz )

•j ≥ 0.

For instance, the Hadamard product inequalities (8.1), (8.2) are equivalent to

yk(A−1
yz )ik ≤ 0 (k = 1, . . . , n), (8.3)

zh(A−1
yz )hj ≥ 0 (h = 1, . . . , n).

Thus, if we know in advance that, e.g., Bik > 0, then (A−1
yz )ik > 0 for each y, z ∈ Yn

and (8.3) implies that yk = −1; similarly, if Bik < 0, then (8.3) gives yk = 1.

Hence, preliminary knowledge of the signs of the bounds may lead us to a reduction,

sometimes significant, of the number of matrices Ayz to be inverted. We shall explore

these ideas further in Section 12.

9. NP-hardness. The formulae given for the inverse interval matrix in Theo-

rems 8.1 and 8.2 are inherently exponential. The question whether essentially simpler

formulae may be found was answered in the negative by Coxson [3] who proved that

computation of the inverse interval matrix is NP-hard.

Theorem 9.1. [3] The following problem is NP-hard:

Instance. A strongly regular interval matrix A = [Ac−∆, Ac +∆] with symmetric

rational Ac and ∆.

Question. Is B11 ≥ 1, where [B,B] = A−1 ?

Hence, if the famous conjecture “P6=NP” is true, then there does not exist a

polynomial-time algorithm for computing the interval inverse. In view of this fact, in

what follows we shall concentrate on special classes of interval matrices for which the

inverse can be computed by simpler means.
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10. Inverse of an interval matrix with unit midpoint. The first such a class

is formed by interval matrices with unit midpoint, i.e., of the form A = [I−∆, I +∆].

Such matrices are regular if and only if ̺(∆) < 1 holds [22, Prop. 4.1], which is

equivalent to

M := (I − ∆)−1 ≥ 0. (10.1)

Hence, we assume that ̺(∆) < 1 throughout this section. The main point here

consists in the fact all the matrices By, y ∈ Yn can be described explicitly. The

following theorem gives a general matrix formula (10.2) as well as three different

componentwise formulae (10.3), (10.4), and (10.5). We use M = (mij) given by

(10.1) and µ = (µj) defined by

µj =
mjj

2mjj − 1
(j = 1, . . . , n).

Theorem 10.1. [22, Thm. 4.2] Let ̺(∆) < 1. Then for each y ∈ Yn the unique

solution of the matrix equation1

B − Ty∆|B| = I

is given by

By = TyMTy + Ty(M − I)Tµ(I − Ty), (10.2)

i.e., componentwise

(By)ij = yiyjmij + yi(1 − yj)(mij − Iij)µj , (10.3)

or

(By)ij =





yimij if yj = 1,

yi(2µj − 1)mij if yj = −1 and i 6= j,

µj if yj = −1 and i = j,

(10.4)

or

(By)ij =
(yi + (1 − yi)Iij)mij

yj + (1 − yj)mjj

(10.5)

(i, j = 1, . . . , n).

Using Theorem 8.1, we obtain simple formulae for the interval inverse in this case.

1This is the equation (5.1) with Ac = I.
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Theorem 10.2. [22, Thm. 4.3] Let A = [I −∆, I + ∆] with ̺(∆) < 1. Then the

inverse interval matrix A−1 = [B,B] is given by

B = −M + Tκ,

B = M, (10.6)

where

κj =
2m2

jj

2mjj − 1
(j = 1, . . . , n),

or componentwise

Bij =

{
−mij if i 6= j,

µj if i = j,

Bij = mij

(i, j = 1, . . . , n).

In particular, we have this consequence.

Theorem 10.3. [22, Cor. 4.4] If ̺(∆) < 1, then the inverse interval matrix

[I − ∆, I + ∆]−1 = [B,B] satisfies

1
2 ≤ Bjj ≤ 1 ≤ Bjj

for each j.

According to (10.6), B = (I − ∆)−1. The last theorem of this section reveals at

what matrices the entries of B are attained.

Theorem 10.4. [22, Thm. 5.1] For each i, j we have:

(i) if i 6= j, then

Bij = (I − Ty∆Ty)−1
ij

for each y ∈ Y satisfying yiyj = −1,

(ii) if i = j, then

Bjj = (I − Ty∆Tz)
−1
jj

for each y ∈ Y satisfying yj = −1 and z = y + 2ej.

11. Enclosure of the inverse interval matrix. An interval matrix C is called

an enclosure of A−1 if A−1 ⊆ C. Computation of an enclosure of the inverse of a

strongly regular interval matrix can be performed in polynomial time, as shown in
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the following theorem which is a follow-up of previous results by Hansen [8], Bliek [2]

and Rohn [17] on interval linear equations.

Theorem 11.1. [4, Thm. 2.40] Let A = [Ac − ∆, Ac + ∆] be strongly regular.

Then we have

A−1 ⊆ [B,B],

where

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . ,Mnn)T ,

Tν = (2Tµ − I)−1,

B
˜

= −M |A−1
c | + Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c | + Tµ(A−1

c − |A−1
c |),

B = min{B
˜

, TνB
˜
},

B = max{B̃, TνB̃}.

Other types of enclosures were studied by Hansen [6], Hansen and Smith [7], Herz-

berger and Bethke [11], and Herzberger [9], [10].

The preliminary knowledge of an enclosure may make computation of the interval

inverse easier, see Theorem 12.2 below.

12. Inverse sign stability. Let Z be a matrix satisfying |Z| = E, i.e., a ±1-

matrix. We say that a regular interval matrix A is inverse Z-stable if

Z ◦ A−1 > 0

holds for each A ∈ A. This means that for each i, j, either (A−1)ij < 0 for each

A ∈ A (if Zij = −1), or (A−1)ij > 0 for each A ∈ A (if Zij = 1). We say simply that

A is inverse sign stable if it is inverse Z-stable for some Z.

We have the following finite characterization.

Theorem 12.1. [18, Thm. 2.1] A is inverse Z-stable if and only if each Ayz is

nonsingular and

Z ◦ A−1
yz > 0 (12.1)

holds for each y, z ∈ Yn.

Notice that regularity of A is not assumed; it follows from (12.1). The next

theorem gives a sufficient inverse Z-stability condition verifiable in polynomial time.
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Theorem 12.2. [Improved version of [18], Thm. 2.2] If A is strongly regular

and if

B ◦ B > 0

holds, where B,B are as in Theorem 11.1, then A is inverse Z-stable, where Z =

sgn(B).

The main reason for introducing inverse Z-stable matrices is the following theorem

which gives explicit componentwise formulae for entries of the bounds of the inverse

interval matrix. It is an easy consequence of Theorem 8.3.

Theorem 12.3. [18, Thm. 2.3] Let A be inverse Z-stable. Then the bounds of

its inverse A−1 = [B,B] are given by the explicit formulae

Bij = (A−1
−y(i),z(j))ij

Bij = (A−1
y(i)z(j))ij (i, j = 1, . . . , n),

where y(i) = sgn((Zi•)
T ) and z(j) = sgn(Z•j) for each i, j.

13. Inverse sign pattern. Let A be regular. If there exist (fixed) z, y ∈ Yn

such that

(zyT ) ◦ A−1 ≥ 0 (13.1)

for each A ∈ A, then A is said to be of the inverse sign pattern (z, y). In other

words, for each i, j we have ziyj(A
−1)ij ≥ 0 for each A ∈ A, so that ziyj prescribes

the sign of (A−1)ij . If strict inequality holds in (13.1), then A is inverse zyT -stable.

The property (13.1) can be succinctly reformulated as

TzA
−1Ty ≥ 0

for each A ∈ A. It is a rather surprising fact that for both the characterization and

the explicit form of interval inverse we need only two matrices in this case, namely

A−1
yz and A−1

−y,z.

Theorem 13.1. [15, Thm. 4.6] A is of the inverse sign pattern (z, y) if and

only if Ayz and A−y,z are nonsingular and

TzA
−1
yz Ty ≥ 0, (13.2)

TzA
−1
−y,zTy ≥ 0 (13.3)

hold2.

2Which implicitly asserts that the two conditions (13.2) and (13.3) imply regularity of A.
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The following theorem has not been published so far.

Theorem 13.2. If A is of the inverse sign pattern (z, y), then its inverse interval

matrix is given by

A−1 = [min{A−1
yz , A−1

−y,z},max{A−1
yz , A−1

−y,z}]. (13.4)

See Garloff [5] for the special case of y = z = (1,−1, 1,−1, . . . , (−1)n−1)T .

14. Nonnegative invertibility. An interval matrix A is said to be nonnegative

invertible if it is of the inverse sign pattern (e, e), i.e., if

A−1 ≥ 0

holds for each A ∈ A. As immediate consequences of Theorems 13.1 and 13.2, we

obtain the following two results.

Theorem 14.1. [12] A is nonnegative invertible if and only if A−1 ≥ 0 and

A
−1

≥ 0.

Theorem 14.2. [13] If A = [A,A] is nonnegative invertible, then

A−1 = [A
−1

, A−1]. (14.1)

The last formula follows from the fact that A−1 − A
−1

= A−1(A − A)A
−1

≥ 0

which gives A−1 ≥ A
−1

, hence (13.4) implies (14.1). Finally, we have the following

inverse expansion theorem.

Theorem 14.3. [14, Thm. 2] If A is inverse nonnegative, then for each A ∈ A

there holds

A−1 =
( ∞∑

j=0

(A
−1

(A − A))j
)
A

−1
.

15. Uniform width. An interval matrix A is said to be of uniform width if it

is of the form

A = [Ac − αE,Ac + αE] (15.1)

for some α ≥ 0. For sufficiently small α, its inverse can be again expressed explicitly.

Let us denote

c = |A−1
c |e,

d = |A−1
c |T e.
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Theorem 15.1. [16, Thm. 2] Let Ac be nonsingular and let α ≥ 0 satisfy

α(cdT + ‖c‖1|A
−1
c |) < |A−1

c |. (15.2)

Then for the interval inverse [B,B] of (15.1) we have

Bij = (A−1
c )ij −

αcidj

1 + αz(j)T A−1
c y(i)

,

Bij = (A−1
c )ij +

αcidj

1 − αz(j)T A−1
c y(i)

(i, j = 1, . . . , n),

where

y(i) = sgn(((A−1
c )i•)

T ),

z(j) = sgn((A−1
c )•j).

The condition (15.2) provides for both strong regularity and inverse sign stability

of A.

16. Software. The freely available verification software package VERSOFT [26]

written in INTLAB [23], [24], a toolbox of MATLAB, contains a file VERINVERSE.M

[25] for computing a verified inverse of a square interval matrix. Its syntax is

[B,S] = verinverse(A),

where A is an interval matrix, B is its verified interval inverse (if found), and S is a

very tight interval matrix which is a part of A and is verified to contain a singular

matrix in A (if found). B and S are never assigned numerical values simultaneously; at

least one of them is a matrix of NaN’s as the two options - regularity and singularity -

exclude each other. The interval matrix B, if computed, is verified to contain the

interval inverse of A and the overestimation is solely due to the outward rounding

committed; in infinite precision arithmetic it would compute the exact interval inverse.

It is based on a not-a-priori-exponential algorithm hull for solving interval linear

equations described in [19]; its theoretical basis and implementation details have not

been published. Nevertheless, the computation may occasionally last long as the

problem is NP-hard (Theorem 9.1). In such cases we recommend computation of a

polynomial-time enclosure described in Theorem 11.1. This enclosure has not been

included into VERSOFT. INTLAB users may employ the function INV.M adapted

for an interval argument by S.M. Rump [24].

17. Appendix: An algorithm for solving the absolute value equation.

This appendix contains a MATLAB-like description of an algorithm for solving the

absolute value equation accompanied by a finite termination theorem. Both these

results were referred to in Section 6.
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Theorem 17.1. [21, Thm. 3.1] For each A,B ∈ R
n×n and each b ∈ R

n, the sign

accord algorithm (Fig. 17.1) in a finite number of steps either finds a solution of the

equation

Ax + B|x| = b,

or states singularity of the interval matrix [A−|B|, A+ |B| ] (and, in most cases, also

finds a singular matrix S ∈ [A − |B|, A + |B| ]).

function [x, S, flag] = signaccord (A,B, b)

% Finds a solution to Ax + B|x| = b or states

% singularity of [A − |B|, A + |B| ].

x = [ ]; S = [ ]; flag = ′singular′;

if A is singular, S = A; return, end

p = 0 ∈ R
n;

z = sgn(A−1b);

if A + BTz is singular, S = A + BTz; return, end

x = (A + BTz)
−1b;

C = −(A + BTz)
−1B;

while zjxj < 0 for some j

k = min{j | zjxj < 0};

if 1 + 2zkCkk ≤ 0

S = A + B(Tz + (1/Ckk)ekeT
k );

x = [ ];

return

end

pk = pk + 1;

if log2 pk > n − k, x = [ ]; return, end

zk = −zk;

α = 2zk/(1 − 2zkCkk);

x = x + αxkC•k;

C = C + αC•kCk•;

end

flag = ′solution′;

Fig. 17.1. The sign accord algorithm [21].
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