Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems

Vincenzo Ambrosio, Alessio Fiscella and Teresa Isernia

1Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy
2Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Rua Sérgio Buarque de Holanda, 651, Campinas, SP CEP 13083–859, Brazil

Received 2 September 2018, appeared 8 April 2019
Communicated by Dimitri Mugnai

Abstract. We investigate a class of critical stationary Kirchhoff fractional p-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.

Keywords: fractional p-Laplacian, Kirchhoff coefficient, Hardy potentials, critical Sobolev exponent, variational methods.

2010 Mathematics Subject Classification: 35R11, 35A15, 47G20, 49J35.

1 Introduction

In this paper we consider the following fractional problem

\[
\begin{cases}
 M([u]_{sp}^p)(-\Delta)^s_p u - \gamma \frac{|u|^{p-2}u}{|x|^p} = \lambda w(x)|u|^{q-2}u + \frac{|u|^{p^*_s(\alpha)-2}u}{|x|^\alpha}, & \text{in } \Omega, \\
 u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

where $0 < s < 1 < p < \infty$, $0 \leq \alpha < sp < N$, $1 < q < p$, $p^*_s(\alpha) = \frac{p(N-\alpha)}{N-sp} \leq p^*_s(0) = p^*_s$ is the critical Hardy–Sobolev exponent, γ and λ are real parameters, w is a positive weight whose assumption will be introduced in the sequel and $\Omega \subseteq \mathbb{R}^N$ is a general open set. Naturally, the condition $u = 0$ in $\mathbb{R}^N \setminus \Omega$ disappears when $\Omega = \mathbb{R}^N$.

Here $(-\Delta)^s_p$ denotes the fractional p-Laplace operator which, up to normalization factors, may be defined by the Riesz potential as

\[
(-\Delta)^s_p u(x) = 2 \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} dy, \quad x \in \mathbb{R}^N,
\]

Corresponding author. Email: fiscella@ime.unicamp.br
along any \(u \in C_0^\infty(\mathbb{R}^N) \), where \(B_\varepsilon(x) = \{ y \in \mathbb{R}^N : |x-y| < \varepsilon \} \). See [11, 23] and the references therein for further details on the fractional Sobolev space \(W^{s,p}(\Omega) \) and some recent results on the fractional \(p \)-Laplacian.

Problem (1.1) is fairly delicate due to the intrinsic lack of compactness, which arise from the Hardy term and the nonlinearity with critical exponent \(p_0^*(\alpha) \). For this reason, we strongly need that the Kirchhoff coefficient \(M \) is non-degenerate, namely \(M(t) > 0 \) for any \(t \geq 0 \). Hence, along the paper, we suppose that the Kirchhoff function \(M : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \) is continuous and satisfies

\[
(M_1) \quad \inf_{t \in \mathbb{R}_0^+} M(t) = a > 0; \\
(M_2) \quad \text{there exists } \theta \in [1, p_0^*(\alpha)/p), \text{ such that } M(t)t \leq \theta M(t) \text{ for all } t \in \mathbb{R}_0^+, \text{ where } M(t) = \int_0^t M(\tau)d\tau.
\]

Concerning the positive weight \(w \), we assume that

\[
(w) \quad w(x)|x|^{-\frac{4s}{p}\alpha} \in L^p(\mathbb{R}^N), \quad \text{with } r = \frac{p_0^*(\alpha)}{p_0^*(\alpha) - q}.
\]

Condition \((w)\) is necessary, since it guarantees that the embedding \(Z(\Omega) \hookrightarrow L^q(\Omega, w) \) is compact, even when \(\Omega \) is the entire space \(\mathbb{R}^N \). Indeed, the natural solution space for problem (1.1) is the fractional density space \(Z(\Omega) \), that is the closure of \(C_0^\infty(\Omega) \) with respect to the norm \(\langle \cdot \rangle_{s,p} \), given by

\[
[u]_{s,p} = \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}}\,dxdy \right)^{1/p}.
\]

Thus, by arguing similarly to Lemma 4.1 of [15], we have that the embedding \(Z(\Omega) \hookrightarrow L^q(\Omega, w) \) is compact with

\[
\|u\|_{q,w} \leq C_w[u]_{s,p} \quad \text{for any } u \in Z(\Omega),
\]

where the weighted norm is set by

\[
\|u\|_{q,w} = \left(\int_{\Omega} w(x)|u(x)|^q\,dx \right)^{1/q}
\]

and \(C_w = H^{-1/p}_a \left(\int_{\mathbb{R}^N} w\varphi(x)|x|^{-\frac{4s}{p}\alpha}\,dx \right)^{1/q} \) is a positive constant. Here \(H_a = H(N, p, s, \alpha) \) denotes the best fractional critical Hardy–Sobolev constant, given by

\[
H_a = \inf_{u \in Z(\Omega) \setminus \{0\}} \frac{[u]_{s,p}}{\|u\|_{H_a}^p}, \quad \|u\|_{H_a}^p = \int_{\Omega} |u(x)|^{p_0^*(\alpha)}\,dx / |x|^{\alpha}, \quad \text{for any } u \in Z(\Omega) \setminus \{0\}.
\]

Of course number \(H_a \) is well-defined and strictly positive for any \(\alpha \in [0, ps] \), since Lemma 2.1 of [15]. We observe that when \(\alpha = 0 \) then \(H_0 \) coincides with the critical Sobolev constant, while when \(\alpha = sp \) then \(H_{sp} \) is the true critical Hardy constant. In order to simplify the notation, throughout the paper we denote the true fractional Hardy constant and the true fractional Hardy norm with \(H = H_{sp} \) and \(\| \cdot \|_H = \| \cdot \|_{H_{sp}} \) in (1.3) when \(\alpha = sp \).

When \(s = 1 \) and \(p = 2 \), our problem (1.1) is related to the celebrated Kirchhoff equation

\[
\rho u_{tt} - \left(\frac{P_0}{H} + \frac{E}{2L} \int_0^L |u_x|^2\,dx \right) u_{xx} = 0,
\]
Fractional Kirchhoff–Sobolev–Hardy critical problems

proposed by Kirchhoff [21] in 1883 as a nonlinear generalization of D’Alembert’s wave equation for free vibrations of elastic strings. This model describes a vibrating string, taking into account the changes in the length of the string during vibrations. In the equation (1.4) \(u = u(x,t) \) is the transverse string displacement at the space coordinate \(x \) and time \(t \), \(L \) is the length of the string, \(h \) is the area of the cross section, \(E \) is Young’s modulus of the material, \(\rho \) is the mass density, and \(P_0 \) is the initial tension. The early studies devoted to the Kirchhoff model were given by Bernstein [6], Lions [22] and Pohozaev [26].

In the nonlocal setting, Fiscella and Valdinoci [17] proposed a stationary Kirchhoff variational model in smooth bounded domains of \(\mathbb{R}^N \), which takes into account the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string, given by Caffarelli et al. in [8]. In other words, the problem studied in [17] is the fractional version of the Kirchhoff equation (1.4). Starting from [17], a great attention has been devoted to the study of fractional Kirchhoff problems; see for example [1–3, 9, 13–16, 24, 27].

The true local version of problem (1.1), namely when \(M \equiv 1 \) and \(s = 1 \), given by

\[
\begin{cases}
-\Delta_p u - \frac{|u|^{p-2}u}{|x|^\theta} = \lambda w(x)|u|^{p-2}u + \frac{|u|^{p^*(a)-2}u}{|x|^\alpha}, & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\] (1.5)

has been widely studied in [10,12,18,19]. In these works, the authors proved the existence of infinitely many solutions of (1.5), when the parameter \(\lambda \) is controlled by a suitable threshold depending on the following Sobolev–Hardy–critical constant

\[
S_\gamma = \inf_{W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_\Omega \left(|\nabla u(x)|^p - \gamma \frac{|u(x)|^p}{|x|^\theta} \right) dx}{\left(\frac{\int_\Omega |u(x)|^{p^*(a)} dx}{|x|^\alpha} \right)}^{\frac{p}{p^*(a)}}.
\]

In order to overcome the lack of compactness, due to the presence of two Hardy potentials in (1.5), they exploit a concentration compactness principle, applied to the combined norm \(\int_\Omega \left(|\nabla u|^p - \gamma \frac{|u|^p}{|x|^\theta} \right) dx \) and to the critical norm \(\int_\Omega \frac{|u|^{p^*(a)}}{|x|^\alpha} dx \). Because of the bi–nonlocal nature of the problem (1.1), the same approach of [10,12,18,19] can not work in our case. Indeed, due to the presence of a Kirchhoff coefficient \(M \), for which the equation in (1.1) is no longer a pointwise identity, we have difficulties in considering a combined norm. Since \(\Omega \) could be unbounded, we can not apply a concentration compactness argument because of the nonlocal nature of \((-\Delta)_\alpha^\mu \), as well explained in Section 2.3 of [25]. For these reasons, we use a tricky analysis of the energy functional which allows us to handle the two Hardy potentials in (1.1); see Sections 2 and 3.

Thus, we get the next multiplicity result for (1.1), which involves the main geometrical parameter \(\kappa_\sigma = \kappa(\sigma) \) defined by

\[
\kappa_\sigma = \frac{a(\sigma - \theta p)}{\theta(\sigma - p)},
\] (1.6)

for any \(\sigma \in (p\theta, p^*_\alpha(a)) \). A parameter similar to (1.6) already appeared in [9]. Clearly \(\kappa_\sigma \leq a \), since \(\theta \geq 1 \) and \(p\theta \leq \sigma \). When \(\theta = 1 \) in \((M_2) \), we observe that parameter \(\kappa_\sigma = a \) does not depend by the choice of \(\sigma \). As shown in Section 2 of [9], the situation \(\theta = 1 \) holds true in other cases, besides the obvious one \(M \equiv a \).

Now, we are ready to state the main result of the present paper.
Theorem 1.1. Let $N > ps > \alpha \geq 0$, $q \in (1, p)$, with $s \in (0, 1)$ and $p \in (1, \infty)$. Assume that M and w satisfy assumptions (M_1)–(M_2) and (w).

Then, for any $\sigma \in (p\theta, p_s^*(\alpha))$ and for any $\gamma \in (-\infty, \kappa_c H)$, there exists $\lambda = \lambda(\sigma, \gamma) > 0$ such that for any $\lambda \in (0, \bar{\lambda})$ problem (1.1) admits a sequence of solutions $\{u_n\}_n$ in $Z(\Omega)$ with the energy functional $J_{\gamma, \lambda}(u_n) < 0$, $J_{\gamma, \lambda}(u_n) \to 0$ and $\{u_n\}_n$ converges to zero as $n \to \infty$.

The proof of Theorem 1.1 is obtained by applying suitable variational methods and consists of several steps. In Section 2 we study the compactness property of the Euler-Lagrange functional associated with (1.1). After that, in Section 3, we introduce a truncated functional which allows us to apply the symmetric mountain pass lemma in [20]. Finally, we prove that the critical points of the truncated functional are indeed solutions of the original problem (1.1).

2 The Palais–Smale condition

Throughout the paper we assume that $N > ps > \alpha \geq 0$, $s \in (0, 1)$, $p \in (1, \infty)$, $q \in (1, p)$, (M_1)–(M_2) and (w), without further mentioning.

According to the variational nature, (weak) solutions of (1.1) correspond to critical points of the truncated functional $J_{\gamma, \lambda} : Z(\Omega) \to \mathbb{R}$, defined by

$$J_{\gamma, \lambda}(u) = \frac{1}{p} \mathcal{M}(\|u\|_{s,p}^p) - \frac{\gamma}{p} \|u\|_p^p - \frac{\lambda}{q} \|u\|_q^q - \frac{1}{p^*_s(\alpha)} \|u\|_{H_s}^{p^*_s(a)}.$$

Note that $J_{\gamma, \lambda}$ is a $C^1(Z(\Omega))$ functional and for any $u, \varphi \in Z(\Omega)$

$$\langle J'_{\gamma, \lambda}(u), \varphi \rangle = M(\|u\|_{s,p}^p)\langle u, \varphi \rangle_{s,p} - \gamma \langle u, \varphi \rangle_H - \lambda \langle u, \varphi \rangle_{q,w} - \langle u, \varphi \rangle_{H_s},$$

where

$$\langle u, \varphi \rangle_{s,p} = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2}[u(x) - u(y)] \cdot [\varphi(x) - \varphi(y)]}{|x - y|^{N+sp}} dx dy,$$

$$\langle u, \varphi \rangle_{q,w} = \int_{\Omega} \frac{w(x)|u(x)|^{q-2}u(x)\varphi(x)}{|x|^{N+sp}} dx,$$

$$\langle u, \varphi \rangle_H = \int_{\Omega} \frac{|u(x)|^{p-2}u(x)\varphi(x)}{|x|^{N+sp}} dx, \quad \langle u, \varphi \rangle_{H_s} = \int_{\Omega} |u(x)|^{1/2} u(x) \varphi(x) \frac{dx}{|x|^a}.$$

Now, we discuss the compactness property for the functional $J_{\gamma, \lambda}$, given by the Palais–Smale condition. We recall that $\{u_n\}_n \subset Z(\Omega)$ is a Palais–Smale sequence for $J_{\gamma, \lambda}$ at level $c \in \mathbb{R}$ if

$$J_{\gamma, \lambda}(u_n) \to c \quad \text{and} \quad J'_{\gamma, \lambda}(u_n) \to 0 \quad \text{in } (Z(\Omega))' \quad \text{as } n \to \infty. \quad (2.2)$$

We say that $J_{\gamma, \lambda}$ satisfies the Palais–Smale condition at level c if any Palais–Smale sequence $\{u_n\}_n$ at level c admits a convergent subsequence in $Z(\Omega)$.

Lemma 2.1. Let $c < 0$.

Then, for any $\sigma \in (p\theta, p_s^*(\alpha))$ and any $\gamma \in (-\infty, \kappa_c H)$ there exists $\lambda_0 = \lambda_0(\sigma, \gamma) > 0$ such that for any $\lambda \in (0, \lambda_0)$, the functional $J_{\gamma, \lambda}$ satisfies the Palais–Smale condition at level c.

Proof. Fix $\sigma \in (p\theta, p_s^*(\alpha))$ and $\gamma \in (-\infty, \kappa_c H)$. Since $\gamma < \kappa_c H \leq aH$, there exists a number $\tilde{c} \in [0, 1)$ such that $\gamma^+ = \tilde{c} a H$. Thus, let us consider $\lambda_0 = \lambda_0(\sigma, \gamma) > 0$ sufficiently small such that

$$\left(1 - \frac{1}{p_s^*(\alpha)}\right)^{-\frac{p^*_s(a)}{p^*_s(\alpha)-q}} \left[\lambda_0 \left(\frac{1}{\sigma} - \frac{1}{p^*_s(\alpha)} \right) \|w\|_{s,p} \right]^{-\frac{p^*_s(a)}{p^*_s(\alpha)-q}} < \left(1 - \tilde{c} a H\right)^{-\frac{p^*_s(a)}{p^*_s(\alpha)-q}} \quad (2.3)$$
where \(q < p < p_s^*(\alpha) \), \(a \) is set in \((M_1)\), while \(H_a \) is given in \((1.3)\).

Fix \(\lambda \in (0, \lambda_0) \). Let \(\{u_n\}_n \) be a \((PS)_c\) sequence in \(Z(\Omega) \). We first show that \(\{u_n\}_n \) is bounded. By using the assumptions \((M_1)\) and \((M_2)\), and the inequalities \((1.2)\) and \((1.3)\), we get

\[
\mathcal{J}_{\gamma, \lambda}(u_n) - \frac{1}{\sigma} \langle \mathcal{J}_{\gamma, \lambda}'(u_n), u_n \rangle \geq \left(\frac{1}{p_{\theta}} - \frac{1}{\sigma} \right) M([u_n]_{s,p})^p [u_n]_{s,p} - \frac{\gamma^+}{H} \left(\frac{1}{p} - \frac{1}{\sigma} \right) [u_n]_{s,p}^p \\
- \lambda \left(\frac{1}{q} - \frac{1}{\sigma} \right) C_\theta [u_n]_{s,p}^q - \left(\frac{1}{p_{s}^*(\alpha)} - \frac{1}{\sigma} \right) \|u_n\|_{H_a}^{p_{s}^*(\alpha)} \\
\geq v[u_n]_{s,p}^p - \lambda \left(\frac{1}{q} - \frac{1}{\sigma} \right) C_\theta [u_n]_{s,p}^q \\
- \left(\frac{1}{p_{s}^*(\alpha)} - \frac{1}{\sigma} \right) \|u_n\|_{H_a}^{p_{s}^*(\alpha)},
\]

(2.4)

where

\[
v = \left(\frac{1}{p_{\theta}} - \frac{1}{\sigma} \right) a - \frac{\gamma^+}{H} \left(\frac{1}{p} - \frac{1}{\sigma} \right) > 0
\]

(2.5)
in view of \((1.6)\) and the fact that \(\sigma > p_{\theta} \geq p \) and \(\gamma \in (-\infty, \kappa_c H) \). Thus, by \((2.2)\) there exists \(\beta > 0 \) such that as \(n \to \infty \)

\[
c + \beta [u_n]_{s,p}^q + o(1) \geq v[u_n]_{s,p}^p,
\]

which implies at once that \(\{u_n\}_n \) is bounded in \(Z(\Omega) \), being \(q < p \).

Therefore, using arguments similar to Lemma 4.1 of [15], there exists a subsequence, still denoted by \(\{u_n\}_n \), and a function \(u \in Z(\Omega) \) such that

\[
\begin{align*}
 u_n \to u & \quad \text{in } Z(\Omega), \\
 [u_n]_{s,p} & \to d, \\
 u_n \to u & \quad \text{in } L^p(\Omega, |x|^{-sp}), \quad \|u_n - u\|_{H} \to 1, \\
 u_n \to u & \quad \text{in } L^{p_{s}^*(\alpha)}(\Omega, |x|^{-a}), \quad \|u_n - u\|_{H_{a}} \to \ell, \\
 u_n \to u & \quad \text{in } L^q(\Omega, w), \quad u_n \to u \text{ a.e. in } \Omega
\end{align*}
\]

(2.6)
as \(n \to \infty \).

Furthermore, as shown in the proof of Lemma 2.4 of [9], by \((2.6)\) the sequence \(\{U_n\}_n \), defined in \(\mathbb{R}^{2N} \setminus \text{Diag } \mathbb{R}^{2N} \) by

\[
(x, y) \mapsto U_n(x, y) = \frac{|u_n(x) - u_n(y)|^{p-2}(u_n(x) - u_n(y))}{|x - y|^{N+sp}},
\]
is bounded in \(L^p(\mathbb{R}^{2N}) \) as well as \(U_n \to U \text{ a.e. in } \mathbb{R}^{2N} \), where

\[
U(x, y) = \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}}.
\]

Thus, up to a subsequence, we get \(U_n \to U \) in \(L^p(\mathbb{R}^{2N}) \), and so as \(n \to \infty \)

\[
\langle u_n, \varphi \rangle_{s,p} \to \langle u, \varphi \rangle_{s,p}
\]

(2.7)

for any \(\varphi \in Z(\Omega) \), since \(|\varphi(x) - \varphi(y)| \cdot |x - y|^{-N+sp} \in L^p(\mathbb{R}^{2N}) \). Similarly, \((2.6)\) and Proposition A.8 of [4] imply that \(|u_n|^{p-2}u_n \to |u|^{p-2}u \text{ in } L^p(\Omega, |x|^{-sp}) \) and \(|u_n|^{p_{s}^*(\alpha)-2}u_n \to |u|^{p_{s}^*(\alpha)-2}u \text{ in } L^{p_{s}^*(\alpha)}(\Omega, |x|^{-a}) \), from which as \(n \to \infty \)

\[
\langle u_n, \varphi \rangle_H \to \langle u, \varphi \rangle_H, \quad \langle u_n, \varphi \rangle_{H_{a}} \to \langle u, \varphi \rangle_{H_{a}},
\]

(2.8)
for any \(\varphi \in Z(\Omega) \).

Thanks to (2.6), by using Hölder inequality it results
\[
\lim_{n \to \infty} \int_{\Omega} w(x) |u_n(x)|^{q-2} u_n(x)(u_n(x) - u(x)) \, dx = 0. \tag{2.9}
\]
Consequently, from (2.2), (2.6)–(2.9) we deduce that, as \(n \to \infty \)
\[
o(1) = \langle J_{\gamma,\lambda}'(u_n), u_n - u \rangle = M([u_n]_{s,p})^{p} \|u_n\|_{s,p}^{p} - M([u_n]_{s,p}) \langle u_n, u \rangle_{s,p}
- \gamma \int_{\Omega} |u_n(x)|^{p-2} u_n(x)(u_n(x) - u(x)) \frac{dx}{|x|^a}
- \lambda \int_{\Omega} w(x) |u_n(x)|^{q-2} (u_n(x) - u(x)) \, dx
- \int_{\Omega} |u_n(x)|^{p^*_a(a)-2} u_n(x)(u_n(x) - u(x)) \, dx \frac{dx}{|x|^a}
= M([u_n]_{s,p}) ([|u_n|_{s,p}^{p} - |u|_{s,p}^{p}] - \gamma (\|u_n\|_{H}^{p} - \|u\|_{H}^{p} - \|u\|_{H}^{p} + o(1).
- \|u_n\|_{H}^{p} + \|u\|_{H}^{p} + o(1). \tag{2.10}
\]
Furthermore, by using (2.6) and the celebrated Brézis and Lieb Lemma in [7], we have
\[
\|u_n\|_{H}^{p} = \|u_n - u\|_{H}^{p} + \|u\|_{H}^{p} + o(1),
\|u_n\|_{H}^{p} = \|u_n - u\|_{H}^{p} + \|u\|_{H}^{p} + o(1), \tag{2.11}
\]
as \(n \to \infty \). By applying again the Brézis and Lieb Lemma [7] to
\[
\frac{(u_n - u)(x) - (u_n - u)(y)}{|x-y|^p} \in L^p(\mathbb{R}^2_N)
\]
we can see that
\[
[u_n]_{s,p}^{p} = [u_n - u]_{s,p}^{p} + [u]_{s,p}^{p} + o(1) \quad \text{as } n \to \infty. \tag{2.12}
\]
Therefore, combining (2.6), the continuity of \(M \) and relations (2.10)–(2.12), we have proved the crucial formula
\[
M(d^p) \lim_{n \to \infty} [u_n - u]_{s,p}^{p} = \gamma \lim_{n \to \infty} \|u_n - u\|_{H}^{p} + \lim_{n \to \infty} \|u_n - u\|_{H}^{p} = \gamma \ell^p + \ell^p(a). \tag{2.13}
\]
Now, let us rewrite the formula (2.13) as
\[
(1 - \tilde{c})M(d^p) \lim_{n \to \infty} [u_n - u]_{s,p}^{p} + \tilde{c}M(d^p) \lim_{n \to \infty} [u_n - u]_{s,p}^{p} = \gamma \ell^p + \ell^p(a),
\]
with \(\tilde{c} \in [0,1] \) fixed at the beginning of the proof. By (M1) and (1.3), we have
\[
(1 - \tilde{c})a H \ell \leq (1 - \tilde{c})M(d^p) \lim_{n \to \infty} [u_n - u]_{s,p}^{p} + \tilde{c}M(d^p) \lim_{n \to \infty} [u_n - u]_{s,p}^{p} \leq \gamma \ell^p + \ell^p(a).
\]
Therefore, since \(\gamma^+ = \tilde{c} a H \), we obtain
\[
\ell^p(a) \geq (1 - \tilde{c})a H \ell^p,
\]
from which, assuming by contradiction that \(\ell > 0 \), we get
\[
\ell^p(a) \geq [(1 - \tilde{c})a H \ell^p]^{\frac{1}{p}}. \tag{2.14}
\]
Exploiting (2.4) and (2.5), taking the limit as $n \to \infty$, and by using (2.2), (2.6), (2.10), assumption (w), Hölder inequality and Young inequality, we can infer
\[
c \geq \left(\frac{1}{\sigma} - \frac{1}{p^*_s(\alpha)} \right) \left(\ell_p^{p^*_s(\alpha)}(A) + \|u\|^p_{H^s} \right) - \lambda \left(\frac{1}{q} - \frac{1}{\sigma} \right) \|w\| \|u\|^q_{H^s}.
\]

Finally, by (2.14) we get
\[
0 > c \geq \left(\frac{1}{\sigma} - \frac{1}{p^*_s(\alpha)} \right) \left[(1 - \widetilde{c}) a H_s \right]^{\frac{p^*_s(\alpha)}{p^*_s(\alpha) - q}} \\
- \left(\frac{1}{\sigma} - \frac{1}{p^*_s(\alpha)} \right)^{-\frac{q}{p^*_s(\alpha) - q}} \left[\lambda \left(\frac{1}{q} - \frac{1}{\sigma} \right) \|w\| \right]^{\frac{p^*_s(\alpha)}{p^*_s(\alpha) - q}} > 0,
\]
where the last inequality follows from (2.3). This is impossible, so $\ell = 0$.

Now, let us assume by contradiction that $\iota > 0$. Then, from (M_1), (1.3) and (2.13) we have
\[
M(d^p) \lim_{n \to \infty} \|u_n - u\|_{s,p}^p = \gamma \lim_{n \to \infty} \|u_n - u\|_{H^s}^p \\
< a H \lim_{n \to \infty} \|u_n - u\|_{H^s}^p \leq M(d^p) \lim_{n \to \infty} \|u_n - u\|_{s,p}^p,
\]
which gives a contradiction. Therefore, $\iota = 0$ and by using again (M_1) and (2.13) it follows that $u_n \to u$ in $Z(\Omega)$ as $n \to \infty$, as claimed.

\section{The truncated functional}

In this section we prove that problem (1.1) admits a sequence of solutions which goes to zero. Firstly, we recall the definition of genus and some its fundamental properties; see [29] for more details.

Let E be a Banach space and A a subset of E. We say that A is symmetric if $u \in A$ implies that $-u \in A$. For a closed symmetric set A which does not contain the origin, we define the genus $\mu(A)$ of A as the smallest integer k such that there exists an odd continuous mapping from A to $\mathbb{R}^k \setminus \{0\}$. If there does not exist such a k, we put $\mu(A) = \infty$. Moreover, we set $\mu(\emptyset) = 0$.

Let us denote by Σ_k the family of closed symmetric subsets A of E such that $0 \notin A$ and $\mu(A) \geq k$. Then we have the following result.

\textbf{Proposition 3.1.} Let A and B be closed symmetric subsets of E which do not contain the origin. Then we have

(i) If there exists an odd continuous mapping from A to B, then $\mu(A) \leq \mu(B)$.

(ii) If there is an odd homeomorphism from A onto B, then $\mu(A) = \mu(B)$.

(iii) If $\mu(B) < \infty$, then $\mu(A \setminus B) \geq \mu(A) - \mu(B)$.
(iv) The n-dimensional sphere S^n has a genus of $n + 1$ by the Borsuk–Ulam Theorem.

(v) If A is compact, then $\mu(A) < \infty$ and there exist $\delta > 0$ and a closed and symmetric neighborhood $N_\delta(A) = \{x \in E : \|x - A\| \leq \delta\}$ of A such that $\mu(N_\delta(A)) = \mu(A)$.

Now, we state the following variant of symmetric mountain pass lemma due to Kajikija [20].

Lemma 3.2. Let E be an infinite-dimensional Banach space and let $I \in C^1(E, \mathbb{R})$ be a functional satisfying the conditions below:

1. $I(u)$ is even, bounded from below, $I(0) = 0$ and $I(u)$ satisfies the local Palais–Smale condition; that is, for some $c^* > 0$, in the case when every sequence $\{u_n\}_n$ in E satisfying $I(u_n) \to c < c^*$ and $I'(u_n) \to 0$ in E^* has a convergent subsequence;

2. For each $n \in \mathbb{N}$, there exists an $A_n \in \Sigma_n$ such that $\sup_{u \in A_n} I(u) < 0$.

Then either (i) or (ii) below holds.

(i) There exists a sequence $\{u_n\}_n$ such that $I'(u_n) = 0$, $I(u_n) < 0$ and $\{u_n\}_n$ converges to zero.

(ii) There exist two sequences $\{u_n\}_n$ and $\{v_n\}_n$ such that $I'(u_n) = 0$, $I(u_n) = 0$, $u_n \neq 0$, $\lim_{n \to \infty} u_n = 0$, $I'(v_n) = 0$, $I(v_n) < 0$, $\lim_{n \to \infty} I(v_n) = 0$ and $\{v_n\}_n$ converges to a non-zero limit.

Remark 3.3. It is worth to point out that in [20] the functional I verifies the Palais–Smale condition in global. Anyway, a careful analysis of the proof of Theorem 1 in [20], allows us to deduce that the result in [20] holds again if I satisfies the local Palais–Smale condition with the critical levels below zero.

Let us note that the functional $J_{\gamma, \lambda}$ is not bounded from below in $Z(\Omega)$. Indeed, assumption (M_1) implies that $M(t) > 0$ for any $t \in \mathbb{R}^+_0$ and consequently by (M_2) we have

$$\frac{M(t)}{\mathcal{M}(t)} \leq \frac{\theta}{\overline{T}}.$$

Thus, integrating on $[1, t]$, with $t > 1$, we get

$$\mathcal{M}(t) \leq \mathcal{M}(1)t^\theta \quad \text{for any } t \geq 1.$$

From this, by using (1.2) and (1.3), for any $u \in Z(\Omega)$ we have

$$J_{\gamma, \lambda}(tu) \leq t^{p^\theta} \mathcal{M}(1) \left[|u|_{\mathcal{P}}^{p^\theta} - t^p \|u\|_H^p - t^{\frac{q}{q}} \|u\|_{q,w}^q \right]$$

$$- \frac{t^p}{p^\gamma(\alpha)} \frac{1}{p_s^*(\alpha)} \|u\|_{p_s^*(\alpha)}^q \to -\infty \quad \text{as } t \to \infty.$$

Now, fix $\gamma \in (-\infty, aH)$ and $\lambda > 0$ and let us consider the function

$$Q_{\gamma, \lambda}(t) = \frac{1}{p} \left(a - \frac{\gamma^+}{H} \right) t^p - \frac{\lambda C_w}{q} t^q - \frac{1}{p_s^*(\alpha) H_s} t^{p_s^*(\alpha)}.$$

Choose $R_1 > 0$ such that

$$\frac{1}{p} \left(a - \frac{\gamma^+}{H} \right) R_1^p = \frac{1}{p_s^*(\alpha) H_s} R_1^{p_s^*(\alpha)}$$

and define

$$\lambda^* = \frac{C_w}{2q R_1^q} \left[\left(a - \frac{\gamma^+}{H} \right) R_1^p - \frac{1}{p_s^*(\alpha) H_s} R_1^{p_s^*(\alpha)} \right].$$

In particular, if

$$\lambda \leq \lambda^*$$

(by the Borsuk–Ulam Theorem).
such that $Q_{\gamma, \lambda^*}(R_1) > 0$. Let us set

$$R_0 = \max\{t \in (0, R_1) : Q_{\gamma, \lambda^*}(t) \leq 0\}.$$ \hfill (3.3)

Taking in mind the fact that $Q_{\gamma, \lambda}(t) \leq 0$ for t near zero, since $q < p < p_s^*(\alpha)$, and $Q_{\gamma, \lambda^*}(R_1) > 0$, we can infer that $Q_{\gamma, \lambda^*}(R_0) = 0$.

Choose $\phi \in C^\infty([0, \infty))$ such that $0 \leq \phi(t) \leq 1$, $\phi(t) = 1$ for $t \in [0, R_0]$ and $\phi(t) = 0$ for $t \in [R_1, \infty)$. Thus, we consider the truncated functional

$$\tilde{J}_{\gamma, \lambda}(u) = \frac{1}{p} \|u\|^p_{s,p} - \frac{\gamma}{p} \|u\|^p_{H^s} - \frac{\lambda}{q} \|u\|^q_{V^q} - \frac{\phi([u]_{s,p})}{p_s^*(\alpha)} \|u\|^{p_s^*(\alpha)}.$$

It immediately follows that $\tilde{J}_{\gamma, \lambda}(u) \to \infty$ as $[u]_{s,p} \to \infty$, by (M_1), since $\gamma \in (-\infty, aH)$ and $q < p$. Hence, $\tilde{J}_{\gamma, \lambda}$ is coercive and bounded from below. Now, we prove a local Palais–Smale result for the truncated functional $\tilde{J}_{\gamma, \lambda}$.

Lemma 3.4. For any $\gamma \in (-\infty, aH)$, there exists $\bar{\lambda} > 0$ such that, for any $\lambda \in (0, \bar{\lambda})$

(i) if $\tilde{J}_{\gamma, \lambda}(u) \leq 0$ then $[u]_{s,p} \leq R_0$, and for any v in a small neighborhood of u we have $J_{\gamma, \lambda}(v) = \tilde{J}_{\gamma, \lambda}(v)$;

(ii) $\tilde{J}_{\gamma, \lambda}$ satisfies a local Palais–Smale condition for $c < 0$.

Proof. Let us choose $\bar{\lambda}$ sufficiently small such that $\bar{\lambda} \leq \min\{\lambda_0, \lambda^*\}$, where λ_0 is defined in Lemma 2.1 and λ^* in (3.2). Fix $\lambda < \bar{\lambda}$.

(i) Let us assume that $\tilde{J}_{\gamma, \lambda}(u) \leq 0$.

If $[u]_{s,p} \geq R_1$, then by using (M_1), (1.2), (1.3), the definition of $\phi(t)$ and the fact that $\lambda < \lambda^*$, we obtain

$$\tilde{J}_{\gamma, \lambda}(u) \geq \frac{1}{p} \left(\frac{\lambda^* C_{\Omega}}{q} \right) \|u\|^p_{s,p} - \lambda^* \|u\|^q_{V^q} > 0,$$

where the last inequality follows from $q < p$ and $Q_{\gamma, \lambda^*}(R_1) > 0$. Thus we get a contradiction because of $0 \geq \tilde{J}_{\gamma, \lambda}(u) > 0$.

When $[u]_{s,p} < R_1$, by using (M_1), (1.2), (1.3), $\lambda < \lambda^*$, the definition of $\phi(t)$, we can infer

$$0 \geq \tilde{J}_{\gamma, \lambda}(u) \geq Q_{\gamma, \lambda}([u]_{s,p}) \geq Q_{\gamma, \lambda^*}([u]_{s,p}).$$

From the definition of R_0 we deduce that $[u]_{s,p} \leq R_0$. Moreover, for any $u \in B_{\frac{R_0}{2}}(0)$ we have that $J_{\gamma, \lambda}(u) = \tilde{J}_{\gamma, \lambda}(u)$.

(ii) Being $\tilde{J}_{\gamma, \lambda}$ a coercive functional, every Palais–Smale sequence for $\tilde{J}_{\gamma, \lambda}$ is bounded. Thus, since $\lambda < \lambda_0$, by Lemma 2.1 we deduce a local Palais–Smale condition for $\tilde{J}_{\gamma, \lambda} \equiv \tilde{J}_{\gamma, \lambda}$ at any level $c < 0$. \hfill \Box

Taking into account that $Z(\Omega)$ is reflexive and separable (see Appendix A in [28]), we can find a sequence $\{\varphi_n\}_n \subset Z(\Omega)$ such that $Z(\Omega) = \text{span}\{\varphi_n : n \in \mathbb{N}\}$. For any $n \in \mathbb{N}$ we can set $X_n = \text{span}\{\varphi_n\}$ and $Y_n = \oplus_{i=1}^n X_i$.

Lemma 3.5. For any $\gamma \in (-\infty, aH)$, $\lambda > 0$ and $k \in \mathbb{N}$, there exists $\varepsilon = \varepsilon(\gamma, \lambda, k) > 0$ such that

$$\mu(\tilde{J}_{\gamma, \lambda}^{-\varepsilon}) \geq k,$$

where $\tilde{J}_{\gamma, \lambda}^{-\varepsilon} = \{u \in Z(\Omega) : \tilde{J}_{\gamma, \lambda}(u) \leq -\varepsilon\}$.
Proof. Fix $\gamma \in (-\infty, aH)$, $\lambda > 0$ and $k \in \mathbb{N}$. Since Y_k is finite dimensional, there exist two positive constants $c_1(k)$ and $c_2(k)$ such that for any $u \in Y_k$

$$c_1(k)|u|_{s,p}^p \leq \|u\|_{H}^p \quad \text{and} \quad c_2(k)|u|_{q,w}^q \leq \|u\|_{q,w}^q.$$

(3.4)

By using (3.4), for any $u \in Y_k$ such that $|u|_{s,p} \leq R_0$, we can infer

$$\tilde{\mathcal{J}}_{\gamma,\lambda}(u) = \mathcal{J}_{\gamma,\lambda}(u) \leq \frac{M^*}{p} |u|_{s,p}^p + \frac{\gamma - c_1(k)}{p} |u|_{s,p}^p - \frac{\lambda}{q} c_2(k)|u|_{q,w}^q,$$

(3.5)

with $M^* = \max_{\tau \in [0,R_0]} M(\tau) < \infty$, by continuity of M. Now, let ϱ be a positive constant such that

$$\varrho < \min \left\{ R_0, \left[\frac{\lambda c_2(k)p}{q(M^* + \gamma - c_1(k))} \right]^{\frac{1}{p-q}} \right\}.$$

(3.6)

Then, for any $u \in Y_k$ such that $|u|_{s,p} = \varrho$, by (3.5) we get

$$\tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq \varrho^p \left[\frac{M^* + \gamma - c_1(k)}{p} \varrho^{p-q} - \frac{\lambda c_2(k)}{q} \right] < 0,$$

(3.7)

where the last inequality follows from (3.6). Hence we can find a constant $\varepsilon = \varepsilon(\gamma, \lambda, k) > 0$ such that $\tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq -\varepsilon$ for any $u \in Y_k$ such that $|u|_{s,p} = \varrho$. As a consequence

$$\{ u \in Y_k : |u|_{s,p} = \varrho \} \subset \{ u \in \mathcal{Z}(\Omega) : \tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq -\varepsilon \} \setminus \{0\}.$$

By using (ii) and (iv) of Proposition 3.1 we have the thesis. \qed

For any $c \in \mathbb{R}$ and any $k \in \mathbb{N}$, let us define the set

$$K_c = \{ u \in \mathcal{Z}(\Omega) : \tilde{\mathcal{J}}_{\gamma,\lambda}'(u) = 0 \text{ and } \tilde{\mathcal{J}}_{\gamma,\lambda}(u) = c \}$$

and the number

$$c_k = \inf_{\mathcal{A} \in \Sigma_k} \sup_{u \in A} \tilde{\mathcal{J}}_{\gamma,\lambda}(u).$$

(3.8)

Lemma 3.6. For any $\gamma \in (-\infty, aH)$, $\lambda > 0$ and $k \in \mathbb{N}$, we have that $c_k < 0$.

Proof. Fix $\gamma \in (-\infty, aH)$, $\lambda > 0$ and $k \in \mathbb{N}$. Then, by using Lemma 3.5 we can find a positive constant ε such that $\mu(\tilde{\mathcal{J}}_{\gamma,\lambda}^{-\varepsilon}) \geq k$. Moreover, $\tilde{\mathcal{J}}_{\gamma,\lambda}^{-\varepsilon} \in \Sigma_k$ since $\tilde{\mathcal{J}}_{\gamma,\lambda}$ is a continuous and even functional. Taking into account that $\tilde{\mathcal{J}}_{\gamma,\lambda}(0) = 0$, we have $0 \notin \tilde{\mathcal{J}}_{\gamma,\lambda}^{-\varepsilon}$ and $\sup_{u \in \tilde{\mathcal{J}}_{\gamma,\lambda}^{-\varepsilon}} \tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq -\varepsilon$.

Therefore, recalling that $\tilde{\mathcal{J}}_{\gamma,\lambda}$ is bounded from below, we get

$$-\infty < c_k = \inf_{\mathcal{A} \in \Sigma_k} \sup_{u \in A} \tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq \sup_{u \in \tilde{\mathcal{J}}_{\gamma,\lambda}^{-\varepsilon}} \tilde{\mathcal{J}}_{\gamma,\lambda}(u) \leq -\varepsilon < 0.$$ \qed

Lemma 3.7. Let $\gamma \in (-\infty, aH)$ and $\lambda \in (0, \bar{\lambda})$, where $\bar{\lambda}$ is given by Lemma 3.4. Then all c_k are critical values for $\tilde{\mathcal{J}}_{\gamma,\lambda}$ and $c_k \to 0$ as $k \to \infty$.

Proof. Fix $\gamma \in (-\infty, aH)$ and $\lambda > 0$. It is easy to see that $c_k \leq c_{k+1}$ for all $k \in \mathbb{N}$. By Lemma 3.6 it follows that $c_k < 0$, so we can assume that $c_k \to \varepsilon \leq 0$. Since $\tilde{\mathcal{J}}_{\gamma,\lambda}$ satisfies the Palais–Smale condition at level c_k by Lemma 3.4, we can argue as in [29] to see that all c_k are critical value of $\tilde{\mathcal{J}}_{\gamma,\lambda}$.\qed
Now, we prove that $\bar{c} = 0$. We argue by contradiction, and we suppose that $\bar{c} < 0$. In view of Lemma 3.4, we know that $K_\bar{c}$ is compact, so, by applying part (v) of Proposition 3.1, we can deduce that $\mu(K_\bar{c}) = k_0 < \infty$ and there exists $\delta > 0$ such that $\mu(K_\delta) = \mu(N_\delta(K_\bar{c})) = k_0$. By Theorem 3.4 of [5], there exists $\varepsilon \in (0, \bar{c})$ and an odd homeomorphism $\eta : Z(\Omega) \to Z(\Omega)$ such that

$$\eta(\tilde{J}_{\gamma,\lambda}^{\bar{c}+\varepsilon} \setminus N_\delta(K_\varepsilon)) \subset \tilde{J}_{\gamma,\lambda}^{\bar{c}-\varepsilon}.$$

Now, taking into account that c_k is increasing and $c_k \to \bar{c}$, we can find $k \in \mathbb{N}$ such that $c_k > \bar{c} - \varepsilon$ and $c_k + k_0 \leq \bar{c}$. Take $A \in \Sigma_{k+k_0}$ such that $\sup_{u \in A} \tilde{J}_{\gamma,\lambda}(u) < \bar{c} + \varepsilon$. By using part (iii) of Proposition 3.1, we obtain

$$\mu(A \setminus N_\delta(K_\varepsilon)) \geq \mu(A) - \mu(N_\delta(K_\varepsilon)) \quad \text{and} \quad \mu(\eta(A \setminus N_\delta(K_\varepsilon))) \geq k,$$

from which $\eta(A \setminus N_\delta(K_\varepsilon)) \in \Sigma_k$. Thus

$$\sup_{u \in \eta(A \setminus N_\delta(K_\varepsilon))} \tilde{J}_{\gamma,\lambda}(u) \geq c_k > \bar{c} - \varepsilon.$$

(3.10)

However, in view of (3.7) and (3.9) we can see that

$$\eta(A \setminus N_\delta(K_\varepsilon)) \subset \eta(\tilde{J}_{\gamma,\lambda}^{\bar{c}+\varepsilon} \setminus N_\delta(K_\varepsilon)) \subset \tilde{J}_{\gamma,\lambda}^{\bar{c}}.$$

which gives a contradiction in virtue of (3.10). Therefore, $\bar{c} = 0$ and $c_k \to 0$. \hfill \Box

Proof of Theorem 1.1. Let $\sigma \in (pt_\gamma p_\gamma^*(a))$, $\gamma \in (-\infty, \kappa_\sigma H)$ and $\lambda \in (0, \bar{\lambda})$. Since $\kappa_\sigma \leq a$, putting together Lemma 3.4, Lemma 3.5, Lemma 3.6 and Lemma 3.7, we can see that $\tilde{J}_{\gamma,\lambda}$ verifies all the assumptions of Lemma 3.2. Therefore, the thesis follows by point (i) of Lemma 3.4. \hfill \Box

Acknowledgements

A. Fiscella realized the manuscript within the auspices of the FAPESP Project titled Fractional problems with lack of compactness (2017/19752–3) and of the CNPq Project titled Variational methods for singular fractional problems (3787749185990982).

V. Ambrosio and T. Isernia realized the manuscript under the auspices of the INDAM – Gnampa Project 2017 titled: Teoria e modelli per problemi non locali.

References

