Isospectral Dirac operators

Yuri Ashrafyan and Tigran Harutyunyan

Yerevan State University, Alex Manoogian 1, Yerevan, 0025, Armenia

Received 30 December 2015, appeared 23 January 2017
Communicated by Miklós Horváth

Abstract. We give the description of self-adjoint regular Dirac operators, on $[0, \pi]$, with the same spectra.

Keywords: inverse spectral theory, Dirac operator, isospectral operators.

2010 Mathematics Subject Classification: 34A55, 34B30, 47E05.

1 Introduction and statement of result

Let p and q are real-valued, summable on $[0, \pi]$ functions, i.e. $p, q \in L^1_R[0, \pi]$. By $L(p, q, \alpha) = L(\Omega, \alpha)$ we denote the boundary-value problem for canonical Dirac system (see [5,6,9,13,14]):

\[
\ell y \equiv \left\{ B \frac{d}{dx} + \Omega(x) \right\} y = \lambda y, \quad x \in (0, \pi), \quad y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad \lambda \in \mathbb{C}, \quad (1.1)
\]
\[
y_1(0) \cos \alpha + y_2(0) \sin \alpha = 0, \quad \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right), \quad (1.2)
\]
\[
y_1(\pi) = 0, \quad (1.3)
\]

where
\[
B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \Omega(x) = \begin{pmatrix} p(x) & q(x) \\ q(x) & -p(x) \end{pmatrix}.
\]

By the same $L(p, q, \alpha)$ we also denote a self-adjoint operator generated by differential expression ℓ in Hilbert space of two component vector-function $L^2([0, \pi]; \mathbb{C}^2)$ on the domain

\[
D = \left\{ y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}; \ y_k \in AC[0, \pi], \ (\ell y)_k \in L^2[0, \pi], \ k = 1, 2; \right. \]
\[
\left. y_1(0) \cos \alpha + y_2(0) \sin \alpha = 0, \quad y_1(\pi) = 0 \right\}
\]

where $AC[0, \pi]$ is the set of absolutely continuous functions on $[0, \pi]$ (see, e.g. [13,16]). It is well known (see [1,5,9]) that under these conditions the spectra of the operator $L(p, q, \alpha)$ is purely discrete and consists of simple, real eigenvalues, which we denote by $\lambda_n = \lambda_n(p, q, \alpha) = \ldots$
λ_n(Ω, α), n ∈ ℤ, to emphasize the dependence of λ_n on quantities p, q and α. It is also well known (see, e.g. [1, 5, 9]) that the eigenvalues form a sequence, unbounded below as well as above. So we will enumerate it as λ_k < λ_{k+1}, k ∈ ℤ, λ_k > 0, when k > 0 and λ_k < 0, when k < 0, and the nearest to zero eigenvalue we will denote by λ_0. If there are two nearest to zero eigenvalue, then by λ_0 we will denote the negative one. With this enumeration it is proved (see [1, 5, 9]), that the eigenvalues have the asymptotics:

\[\lambda_n(Ω, α) = n - \frac{α}{π} + r_n, \quad r_n = o(1), \quad n \to \pm∞. \quad (1.4) \]

In what follows, writing Ω ∈ A will mean p, q ∈ A. If Ω ∈ L^2_R[0, π], then we know, (see, e.g. [9]), that instead of r_n = o(1) we have:

\[\sum_{n=-∞}^{∞} r_n^2 < ∞. \quad (1.5) \]

Let Φ(x, λ) = Φ(x, λ, α, Ω) be the solution of the Cauchy problem

\[\ell Φ = λ Φ, \quad Φ(0, λ) = \begin{pmatrix} \sin α \\ -\cos α \end{pmatrix}. \quad (1.6) \]

Since the differential expression \(\ell \) self-adjoint, then the components \(Φ_1(x, λ) \) and \(Φ_2(x, λ) \) of the vector-function \(Φ(x, λ) \) we can choose real-valued for real \(λ \). By \(a_n = a_n(Ω, α) \) we denote the squares of the \(L^2 \)-norm of the eigenfunctions \(Φ_n(x, Ω) = Φ(x, λ_n(Ω, α), α, Ω) \):

\[a_n = ||Φ_n||^2 = ∫_0^π |Φ_n(x, Ω)|^2 dx, \quad n ∈ ℤ. \]

The numbers \(a_n \) are called norming constants. And by \(h_n(x, Ω) \) we will denote normalized eigenfunctions (i.e. \(||h_n(x)|| = 1 \)):

\[h_n(x, Ω) = h_n(x) = \frac{Φ_n(x, Ω)}{\sqrt{a_n(Ω, α)}}. \quad (1.7) \]

It is known (see [5, 9]) that in the case of \(Ω ∈ L^2_R[0, π] \) the norming constants have an asymptotic form:

\[a_n(Ω) = π + c_n, \quad ∑_{n=-∞}^{∞} c_n^2 < ∞. \quad (1.8) \]

Definition 1.1. Two Dirac operators \(L(Ω, α) \) and \(L(Ω, ˜α) \) are said to be isospectral, if \(λ_n(Ω, α) = λ_n(Ω, ˜α) \), for every \(n ∈ ℤ \).

Lemma 1.2. Let \(Ω, ˜Ω ∈ L^2_R[0, π] \) and the operators \(L(Ω, α) \) and \(L(Ω, ˜α) \) are isospectral. Then \(˜α = α \).

Proof. The proof follows from the asymptotics (1.4):

\[\frac{α}{π} = \lim_{n→∞} \left(n - λ_n(Ω, α)\right) = \lim_{n→∞} \left(n - λ_n(Ω, ˜α)\right) = \frac{˜α}{π}. \]

So, instead of isospectral operators \(L(Ω, α) \) and \(L(Ω, ˜α) \), we can talk about “isospectral potentials” \(Ω \) and \(˜Ω \).
Theorem 1.3 (Uniqueness theorem). The map

\[(\Omega, \alpha) \in L^2_{\mathbb{R}}[0, \pi] \times \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \leftrightarrow \{\lambda_n(\Omega, \alpha), a_n(\Omega, \alpha); n \in \mathbb{Z}\}\]

is one-to-one.

Remark 1.4. It is natural to call this a Marchenko theorem, since it is an analogue of the famous theorem of V. A. Marchenko [15], in the case for Sturm–Liouville problem. The proof of this theorem for the case \(p, q \in AC[0, \pi]\) there is in the paper [18]. The detailed proof for the case \(p, q \in L^2_{\mathbb{R}}[0, \pi]\) there is in [7] (see also [4–6, 8, 10, 19]).

Let us fix some \(\Omega \in L^2_{\mathbb{R}}[0, \pi]\) and consider the set of all canonical potentials \(\tilde{\Omega} = \left(\tilde{p}, \tilde{q}; \tilde{q} - \tilde{p} \right)\), with the same spectra as \(\Omega\):

\[M^2(\Omega) = \{\tilde{\Omega} \in L^2_{\mathbb{R}}[0, \pi]: \lambda_n(\tilde{\Omega}, \tilde{\alpha}) = \lambda_n(\Omega, \alpha), n \in \mathbb{Z}\}\].

Our main goal is to give the description of the set \(M^2(\Omega)\) as explicit as it possible.

From the uniqueness theorem the next corollary easily follows.

Corollary 1.5. The map

\[\tilde{\Omega} \in M^2(\Omega) \leftrightarrow \{a_n(\tilde{\Omega}), n \in \mathbb{Z}\}\]

is one-to-one.

Since \(\tilde{\Omega} \in M^2(\Omega)\), then \(a_n(\tilde{\Omega})\) have similar to (1.8) asymptotics. Since \(a_n(\Omega)\) and \(a_n(\tilde{\Omega})\) are positive numbers, there exist real numbers \(t_n = t_n(\tilde{\Omega})\), such that \(\frac{a_n(\Omega)}{a_n(\tilde{\Omega})} = e^{t_n}\). From the latter equality and from (1.8) follows that

\[e^{t_n} = 1 + d_n, \quad \sum_{n=-\infty}^{\infty} d_n^2 < \infty. \tag{1.9}\]

It is easy to see, that the sequence \(\{t_n; n \in \mathbb{Z}\}\) is also from \(l^2\), i.e. \(\sum_{n=-\infty}^{\infty} t_n^2 < \infty\). Since all \(a_n(\Omega)\) are fixed, then from the corollary 1.5 and the equality \(a_n(\tilde{\Omega}) = a_n(\Omega)e^{-t_n}\) we will get the following corollary.

Corollary 1.6. The map

\[\tilde{\Omega} \in M^2(\Omega) \leftrightarrow \{t_n(\tilde{\Omega}), n \in \mathbb{Z}\} \in l^2\]

is one-to-one.

Thus, each isospectral potential is uniquely determined by a sequence \(\{t_n; n \in \mathbb{Z}\}\). Note, that the problem of description of isospectral Sturm–Liouville operators was solved in [3, 11, 12, 17].

For Dirac operators the description of \(M^2(\Omega)\) is given in [8]. This description has a “recurrent” form, i.e. at the first in [8] is given the description of a family of isospectral potentials \(\Omega(x,t), t \in \mathbb{R}\), for which only one norming constant \(a_m(\Omega(\cdot,t))\) different from \(a_m(\Omega)\) (namely, \(a_m(\Omega(\cdot,t)) = a_m(\Omega)e^{-t\lambda}\)) while the others are equal, i.e. \(a_m(\Omega(\cdot,t)) = a_m(\Omega)\), when \(n \neq m\).
Theorem 1.7 ([8]). Let \(t \in \mathbb{R}, a \in \left(-\frac{n}{2}, \frac{n}{2} \right) \) and

\[
\Omega(x,t) = \Omega(x) + \frac{e^t - 1}{\theta_m(x, t, \Omega)} \{ Bh_m(x, \Omega) h_m^*(x, \Omega) - h_m(x, \Omega) h_m^*(x, \Omega) B \},
\]

where \(\theta_n(x, t, \Omega) = 1 + (e^t - 1) \int_0^t |h_n(s, \Omega)|^2 ds \), and \(*\) is a sign of transposition, e.g. \(h_m^* = \left(h_{n_1}^*, h_{n_2}^*\right) = (h_m^*, h_m^*) \). Then, for arbitrary \(t \in \mathbb{R}, \lambda_n(\Omega, t) = \lambda_n(\Omega) \) for all \(n \in \mathbb{Z}, a_n(\Omega, t) = a_n(\Omega) \) for all \(n \in \mathbb{Z} \setminus \{m\} \) and \(a_m(\Omega, t) = a_m(\Omega)e^t \). The normalized eigenfunctions of the problem \(L(\Omega(\cdot, t), \alpha) \) are given by the formulae:

\[
h_m(x, \Omega(\cdot, t)) = \begin{cases}
\frac{e^{-t/2}}{\theta_m(x, t, \Omega)} h_m(x, \Omega), & \text{if } n = m, \\
h_n(x, \Omega) - \frac{(e^t - 1) \int_0^t h_m^*(s, \Omega) h_n(s, \Omega) ds}{\theta_m(x, t, \Omega)} h_m(x, \Omega), & \text{if } n \neq m.
\end{cases}
\]

Theorem 1.7 shows that it is possible to change exactly one norming constant, keeping the others. As examples of isospectral potentials \(\Omega \) and \(\tilde{\Omega} \) we can present \(\Omega(x) \equiv 0 = \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right) \) and

\[
\tilde{\Omega}(x) = \Omega_m(t) = \frac{\pi (e^t - 1)}{\pi + (e^t - 1)x} \begin{pmatrix} \sin 2mx & -\cos 2mx \\ \cos 2mx & \sin 2mx \end{pmatrix},
\]

where \(t \in \mathbb{R} \) is an arbitrary real number and \(m \in \mathbb{Z} \) is an arbitrary integer.

Changing successively each \(a_m(\Omega) \) by \(a_m(\Omega)e^{-t_m} \), we can obtain any isospectral potential, corresponding to the sequence \(\{t_m; m \in \mathbb{Z}\} \in \ell^2 \). It follows from the uniqueness Theorem 1.3 that the sequence, in which we change the norming constants, is not important.

In [8] were used the following designations:

\[
T_{-1} = \{\ldots, 0, \ldots\}, \\
T_0 = \{\ldots, 0, t_0, 0, \ldots\}, \\
T_1 = \{\ldots, 0, 0, t_0, t_1, 0, \ldots\}, \\
T_2 = \{\ldots, 0, 0, t_0, t_1, 0, \ldots\}, \\
\vdots \\
T_{2n} = \{\ldots, 0, 0, t_{-n}, \ldots, t_1, t_0, \ldots, t_{n-1}, t_n, 0, \ldots\}, \\
T_{2n+1} = \{\ldots, 0, t_{-n}, t_{-n+1}, \ldots, t_1, t_0, \ldots, t_n, 0, \ldots\}, \\
\vdots
\]

Let \(\Omega(x, T_{-1}) \equiv \Omega(x) \) and

\[
\Omega(x, T_m) = \Omega(x, T_{m-1}) + \Delta \Omega(x, T_m), \quad m = 0, 1, 2, \ldots,
\]

where

\[
\Delta \Omega(x, T_m) = \frac{e^{t_m} - 1}{\theta_m(x, t_m, \Omega(\cdot, T_{m-1}))} \left[Bh_m(x, \Omega(\cdot, T_{m-1})) h_m^*(\cdot) - h_m(\cdot) h_m^*(\cdot) B \right],
\]

where \(m = \frac{m+1}{2} \), if \(m \) is odd and \(m = -\frac{m}{2} \), if \(m \) is even. The arguments in others \(h_m(\cdot) \) and \(h_m^*(\cdot) \) are the same as in the first. And after that in [8] the following theorem was proved.
Theorem 1.8 ([8]). Let \(T = \{ t_n, n \in \mathbb{Z} \} \in l^2 \) and \(\Omega \in L^2_{\mathbb{R}}[0, \pi] \). Then

\[
\Omega(x, T) \equiv \Omega(x) + \sum_{m=0}^{\infty} \Delta \Omega(x, T_m) \in M^2(\Omega). \tag{1.10}
\]

We see, that each potential matrix \(\Delta \Omega(x, T_m) \) defined by normalized eigenfunctions \(h_{m_n}(x, \Omega(x, T_{m-1})) \) of the previous operator \(L(\Omega', T_{m-1}, \alpha) \). This approach we call “recursive” description.

In this paper, we want to give a description of the set \(M^2(\Omega) \) only in terms of eigenfunctions \(h_n(x, \Omega) \) of the initial operator \(L(\Omega, \alpha) \) and sequence \(T \in l^2 \). With this aim, let us denote by \(N(T_m) \) the set of the positions of the numbers in \(T_m \), which are not necessary zero, i.e.

\[
N(T_0) = \{ 0 \}, \\
N(T_1) = \{ 0, 1 \}, \\
N(T_2) = \{ -1, 0, 1 \}, \\
\vdots \\
N(T_{2n}) = \{ -n, -(n - 1), \ldots, 0, \ldots, n - 1, n \}, \\
N(T_{2n+1}) = \{ -n, -(n - 1), \ldots, 0, \ldots, n, n + 1 \}, \\
\vdots
\]

in particular \(N(T) \equiv \mathbb{Z} \). By \(S(x, T_m) \) we denote the \((m + 1) \times (m + 1)\) square matrix

\[
S(x, T_m) = \begin{pmatrix}
\delta_{ij} + (e^i - 1) & \int_0^x h_i^*(s)h_j(s)ds \\
\end{pmatrix}_{i,j \in N(T_m)} \tag{1.11}
\]

where \(\delta_{ij} \) is a Kronecker symbol. By \(S_p^{(k)}(x, T_m) \) we denote a matrix which is obtained from the matrix \(S(x, T_m) \) by replacing the \(k \)th column of \(S(x, T_m) \) by \(H_p(x, T_m) = \{ -(e^i - 1)h_{k_p}(x) \}_{k \in N(T_m)} \) column, \(p = 1, 2, \) Now we can formulate our result as follows.

Theorem 1.9. Let \(T = \{ t_k \}_{k \in \mathbb{Z}} \in l^2 \) and \(\Omega \in L^2_{\mathbb{R}}[0, \pi] \). Then the isospectral potential from \(M^2(\Omega) \), corresponding to \(T \), is given by the formula

\[
\Omega(x, T) = \Omega(x) + G(x, x, T)B - BG(x, x, T) = \begin{pmatrix}
p(x, T) & q(x, T) \\
q(x, T) & -p(x, T)
\end{pmatrix}, \tag{1.12}
\]

where

\[
G(x, x, T) = \frac{1}{\det S(x, T)} \sum_{k \in \mathbb{Z}} \begin{pmatrix}
\det S_1^{(k)}(x, T) \\
\det S_2^{(k)}(x, T)
\end{pmatrix} h_k^*(x),
\]

and \(\det S(x, T) = \lim_{m \to \infty} \det S(x, T_m) \) (the same for \(\det S_p^{(k)}(x, T), p = 1, 2 \).

In addition, for \(p(x, T) \) and \(q(x, T) \) we get explicit representations:

\[
p(x, T) = p(x) - \frac{1}{\det S(x, T)} \sum_{k \in \mathbb{Z}} \sum_{p=1}^{2} \det S_p^{(k)}(x, T)h_{k_{\alpha-p}}(x),
\]

\[
q(x, T) = q(x) + \frac{1}{\det S(x, T)} \sum_{k \in \mathbb{Z}} \sum_{p=1}^{2} (-1)^{p-1} S_p^{(k)}(x, T)h_{k_p}(x).
\]
2 Proof of Theorem 1.9

The spectral function of an operator $L(\Omega, \alpha)$ defined as

$$\rho(\lambda) = \begin{cases}
\sum_{0<\lambda_n \leq \lambda} \frac{1}{a_n(\Omega)^2} & \lambda > 0, \\
- \sum_{\lambda < \lambda_n \leq 0} \frac{1}{a_n(\Omega)^2} & \lambda < 0,
\end{cases}$$

i.e. $\rho(\lambda)$ is left-continuous, step function with jumps in points $\lambda = \lambda_n$ equals $\frac{1}{a_n}$ and $\rho(0) = 0$.

Let $\Omega, \hat{\Omega} \in L^2[0, \pi]$ and they are isospectral. It is known (see [1, 2, 6, 13]), that there exists a function $G(x, y)$ such that:

$$\varphi(x, \lambda, \alpha, \hat{\Omega}) = \varphi(x, \lambda, \alpha, \Omega) + \int_0^x G(x, s) \varphi(s, \lambda, \alpha, \Omega) ds.$$ \hfill (2.1)

It is also known (see, e.g. [1, 6, 13]), that the function $G(x, y)$ satisfies to the Gelfand–Levitan integral equation:

$$G(x, y) + F(x, y) + \int_0^x G(x, s)F(s, y) ds = 0, \quad 0 \leq y \leq x, \hfill (2.2)$$

where

$$F(x, y) = \int_{-\infty}^{\infty} \varphi(x, \lambda, \alpha, \Omega) \varphi^*(y, \lambda, \alpha, \Omega) d[\tilde{\rho}(\lambda) - \rho(\lambda)]. \hfill (2.3)$$

If the potential $\hat{\Omega}$ from $M^2(\Omega)$ is such that only finite norming constants of the operator $L(\hat{\Omega}, \alpha)$ are different from the norming constants of the operator $L(\Omega, \alpha)$, i.e. $a_n(\hat{\Omega}) = a_n(\Omega)e^{-i\lambda_n}$, $n \in N(T_m)$ and the others are equal, then it means, that

$$d\tilde{\rho}(\lambda) - d\rho(\lambda) = \sum_{k \in N(T_m)} \left(\frac{1}{\tilde{a}_k} - \frac{1}{a_k} \right) \delta(\lambda - \lambda_k) d\lambda = \sum_{k \in N(T_m)} \left(\frac{e^{i\lambda_k} - 1}{a_k} \right) \delta(\lambda - \lambda_k) d\lambda, \hfill (2.4)$$

where δ is Dirac δ-function. In this case the kernel $F(x, y)$ can be written in a form of a finite sum (using notation (1.7)):

$$F(x, y) = F(x, y, T_m) = \sum_{k \in N(T_m)} (e^{i\lambda_k} - 1)h_k(x, \Omega)h_k^*(y, \Omega), \hfill (2.5)$$

and consequently, the integral equation (2.2) becomes to an integral equation with degenerated kernel, i.e. it becomes to a system of linear equations and we will look for the solution in the following form:

$$G(x, y, T_m) = \sum_{k \in N(T_m)} g_k(x)h^*_k(y), \hfill (2.6)$$

where $g_k(x) = \left(\frac{g_{1k}(x)}{g_{2k}(x)} \right)$ is an unknown vector-function. Putting the expressions (2.5) and (2.6) into the integral equation (2.2) we will obtain a system of algebraic equations for determining the functions $g_k(x)$:
The systems (2.8) might be written in matrix form

\[g_k(x) + \sum_{i \in N(T_m)} s_{ik}(x)g_i(x) = -(e^{ih} - 1)h_k(x), \quad k \in N(T_m), \tag{2.7} \]

where

\[s_{ik}(x) = (e^{ih} - 1) \int_0^x h_i^*(s)h_k(s)ds. \]

It would be better if we consider the equations (2.7) for the vectors \(g_k = \begin{pmatrix} g_{k_1} \\ g_{k_2} \end{pmatrix} \) by coordinates \(g_{k_1} \) and \(g_{k_2} \) to be a system of scalar linear equations:

\[g_{k_p}(x) + \sum_{i \in N(T_m)} s_{ik}(x)g_{ip}(x) = -(e^{ih} - 1)h_{kp}(x), \quad k \in N(T_m), \quad p = 1, 2. \tag{2.8} \]

The systems (2.8) might be written in matrix form

\[S(x, T_m)g_p(x, T_m) = H_p(x, T_m), \quad p = 1, 2, \tag{2.9} \]

where the column vectors \(g_p(x, T_m) = \{g_{kp}(x, T_m)\}_{k \in N(T_m)}, \quad p = 1, 2, \) and the solution can be found in the form (Cramer’s rule):

\[g_{kp}(x, T_m) = \frac{\det S_p^{(k)}(x, T_m)}{\det S(x, T_m)}, \quad k \in N(T_m), \quad p = 1, 2. \]

Thus we have obtained for \(g_k(x) \) the following representation:

\[g_k(x, T_m) = \frac{1}{\det S(x, T_m)} \begin{pmatrix} \det S_1^{(k)}(x, T_m) \\ \det S_2^{(k)}(x, T_m) \end{pmatrix} \tag{2.10} \]

and then by putting (2.10) into (2.6) we find the \(G(x, y, T_m) \) function. If the potential \(\Omega \) is from \(L^1_{K_r} \) then such is also the kernel \(G(x, x, T_m) \) (see [8]), and the relation between them gives as follows:

\[\Omega(x, T_m) = \Omega(x) + G(x, x, T_m)B - BG(x, x, T_m). \tag{2.11} \]

On the other hand we have

\[\Omega(x, T_m) = \Omega(x) + \sum_{k=0}^m \Delta \Omega(x, T_k). \tag{2.12} \]

So, using the Theorem 1.8 and the equality (2.12) we can pass to the limit in (2.11), when \(m \to \infty \):

\[\Omega(x, T) = \Omega(x) + G(x, x, T)B - BG(x, x, T). \tag{2.13} \]

The potentials \(\Omega(x, T) \) in (1.10) and (2.13) have the same spectral data \(\{\lambda_n(T), a_n(T)\}_{n \in \mathbb{Z}} \), and therefore they are the same and \(\Omega(\cdot, T) \) defined by (2.13) is also from \(M^2(\Omega) \).

Using (2.6) and (2.10) we calculate the expression \(G(x, x, T_m)B - BG(x, x, T_m) \) and pass to the limit, obtaining for the \(p(x, T) \) and \(q(x, T) \) the representations:
Yu. A. Ashrafyan and T. N. Harutyunyan

\[p(x, T) = p(x) - \frac{1}{\det S(x, T)} \sum_{k \in \mathbb{N}(T)} \sum_{p=1}^{2} \det S_p^{(k)}(x, T) h_{k(3-p)}(x), \]

\[q(x, T) = q(x) + \frac{1}{\det S(x, T)} \sum_{k \in \mathbb{N}(T)} \sum_{p=1}^{2} (-1)^{p-1} S_p^{(k)}(x, T) h_{k_p}(x). \]

Theorem 1.9 is proved.

For example, when we change just one norming constant (e.g. for \(T_0 \)) we get two independent linear equations:

\[(1 + s_{00}(x)) g_0_1(x) = -(e^{t_0} - 1) h_{0_1}(x), \]

\[(1 + s_{00}(x)) g_0_2(x) = -(e^{t_0} - 1) h_{0_2}(x). \]

For the solutions we get:

\[g_0_1(x) = \frac{-(e^{t_0} - 1) h_{0_1}(x)}{1 + s_{00}(x)}, \]

\[g_0_2(x) = \frac{-(e^{t_0} - 1) h_{0_2}(x)}{1 + s_{00}(x)}, \]

and for the potentials \(p(x, T_0) \) and \(q(x, T_0) \):

\[p(x, T_0) = p(x) + \frac{e^{t_0} - 1}{1 + s_{00}(x)} (2h_{0_1}(x) h_{0_2}(x)), \]

\[q(x, T_0) = q(x) + \frac{e^{t_0} - 1}{1 + s_{00}(x)} (h_{0_2}^2(x) - h_{0_1}^2(x)). \]

Acknowledgements

This work was supported by the RA MES State Committee of Science, in the frames of the research project No.15T-1A392.

References

Isospectral Dirac operators

