Existence of solutions for a fourth-order boundary value problem on the half-line via critical point theory

Mabrouk Briki1, Toufik Moussaoui2,\textcopyright and Donal O’Regan2

1Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria
2School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

Received 14 December 2015, appeared 2 May 2016
Communicated by Alberto Cabada

Abstract. In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.

Keywords: fourth-order BVPs, unbounded interval, critical point, minimization principle, mountain-pass theorem.

2010 Mathematics Subject Classification: 35A15, 35B38.

1 Introduction

We consider the existence of solutions for the following fourth-order boundary value problem set on the half-line

\[
\begin{align*}
&u^{(4)}(t) - u''(t) + u(t) = f(t, u(t)), \quad t \in [0, +\infty), \\
&u(0) = u(+\infty) = 0, \\
&u''(0) = u''(+\infty) = 0,
\end{align*}
\]

(1.1)

where \(f \in C([0, +\infty) \times \mathbb{R}, \mathbb{R}) \).

Many authors used critical point theory to establish the existence of solutions for fourth-order boundary value problems on bounded intervals (see for example \([8,9,13]\)), but there are only a few papers that consider the above problem on the half-line using critical point theory. We cite \([5]\) where the authors consider the existence of solutions for a particular fourth-order BVP on the half-line using critical point theory.

We endow the following space

\[
H^2_0(0, +\infty) = \left\{ u \in L^2(0, +\infty), u' \in L^2(0, +\infty), u'' \in L^2(0, +\infty), u(0) = 0, u'(0) = 0 \right\}
\]

\textcopyrightCorresponding author. Email: moussaoui@ens-kouba.dz
with its natural norm

\[\|u\| = \left(\int_0^{+\infty} u''(t)^2 dt + \int_0^{+\infty} u'(t)^2 dt + \int_0^{+\infty} u^2(t)dt \right)^{\frac{1}{2}}. \]

Note that if \(u \in H_0^2(0, +\infty) \), then \(u(+\infty) = 0, u'(+\infty) = 0 \), (see [3, Corollary 8.9]). Let \(p, q : [0, +\infty) \to (0, +\infty) \) be two continuously differentiable and bounded functions with

\[M_1 = \max(||p||_{L^2}, ||p'||_{L^2}) < +\infty, \quad M_2 = \max(||q||_{L^2}, ||q'||_{L^2}) < +\infty. \]

We also consider the following spaces

\[C_{l,p}[0, +\infty) = \left\{ u \in C([0, +\infty), \mathbb{R}) : \lim_{t \to +\infty} p(t)u(t) \text{ exists} \right\} \]

dowered with the norm

\[\|u\|_{\infty,p} = \sup_{t \in [0, +\infty)} p(t)|u(t)|, \]

and

\[C_{l,p,q}^1[0, +\infty) = \left\{ u \in C^1([0, +\infty), \mathbb{R}) : \lim_{t \to +\infty} p(t)u(t), \lim_{t \to +\infty} q(t)u'(t) \text{ exist} \right\} \]

dowered with the natural norm

\[\|u\|_{\infty,p,q} = \sup_{t \in [0, +\infty)} p(t)|u(t)| + \sup_{t \in [0, +\infty)} q(t)|u'(t)|. \]

Let

\[C_l[0, +\infty) = \left\{ u \in C([0, +\infty), \mathbb{R}) : \lim_{t \to +\infty} u(t) \text{ exists} \right\} \]

dowered with the norm \(\|u\|_{\infty} = \sup_{t \in [0, +\infty)} |u(t)| \).

To prove that \(H_0^2(0, +\infty) \) embeds compactly in \(C_{l,p,q}^1(0, +\infty), \mathbb{R} \), we need the following Corduneanu compactness criterion.

Lemma 1.1 ([4]). Let \(D \subset C_l([0, +\infty), \mathbb{R}) \) be a bounded set. Then \(D \) is relatively compact if the following conditions hold:

(a) \(D \) is equicontinuous on any compact sub-interval of \(\mathbb{R}^+ \), i.e.

\[\forall J \subset [0, +\infty) \text{ compact}, \forall \epsilon > 0, \exists \delta > 0, \forall t_1, t_2 \in J : |t_1 - t_2| < \delta \implies |u(t_1) - u(t_2)| \leq \epsilon, \forall u \in D; \]

(b) \(D \) is equiconvergent at \(+\infty\) i.e.,

\[\forall \epsilon > 0, \exists T = T(\epsilon) > 0 \text{ such that } \forall t : t \geq T(\epsilon) \implies |u(t) - u(+\infty)| \leq \epsilon, \forall u \in D. \]

Similar reasoning as in [6] yields the following compactness criterion in the space \(C_{l,p,q}^1([0, +\infty), \mathbb{R}) \).
Lemma 1.2. Let $D \subset C_{l,p,q}^{1}([0, +\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of $[0, +\infty)$, i.e.
\[
\forall J \subset [0, +\infty) \text{ compact, } \forall \varepsilon > 0, \exists \delta > 0, \forall t_1, t_2 \in J:
\]
\[
|t_1 - t_2| < \delta \implies |p(t_1)u(t_1) - p(t_2)u(t_2)| \leq \varepsilon, \forall u \in D,
\]
\[
|t_1 - t_2| < \delta \implies |q(t_1)u'(t_1) - q(t_2)u'(t_2)| \leq \varepsilon, \forall u \in D;
\]

(b) D is equiconvergent at $+\infty$ i.e.,
\[
\forall \varepsilon > 0, \exists T = T(\varepsilon) > 0 \text{ such that }
\]
\[
\forall t : t \geq T(\varepsilon) \implies |p(t)u(t) - (pu)(+\infty)| \leq \varepsilon, \forall u \in D,
\]
\[
\forall t : t \geq T(\varepsilon) \implies |q(t)u'(t) - (qu')(+\infty)| \leq \varepsilon, \forall u \in D.
\]

Now we recall some essential facts from critical point theory (see [1, 2, 10]).

Definition 1.3. Let X be a Banach space, $\Omega \subset X$ an open subset, and $J : \Omega \rightarrow \mathbb{R}$ a functional. We say that J is Gâteaux differentiable at $u \in \Omega$ if there exists $A X^*$ such that
\[
\lim_{t \rightarrow 0} \frac{J(u + tv) - J(u)}{t} = Av,
\]
for all $v \in X$. Now A, which is unique, is denoted by $A = J'_G(u)$.

The mapping which sends to every $u \in \Omega$ the mapping $J'_G(u)$ is called the Gâteaux differential of J and is denoted by J'_G.

We say that $J \in C^1$ if J is Gâteaux differential on Ω and J'_G is continuous at every $u \in \Omega$.

Definition 1.4. Let X be a Banach space. A functional $J : \Omega \rightarrow \mathbb{R}$ is called coercive if, for every sequence $(u_k)_{k \in \mathbb{N}} \subset X$,
\[
\|u_k\| \rightarrow +\infty \implies |J(u_k)| \rightarrow +\infty.
\]

Definition 1.5. Let X be a Banach space. A functional $J : X \rightarrow (-\infty, +\infty]$ is said to be sequentially weakly lower semi-continuous (swlsc for short) if
\[
J(u) \leq \liminf_{n \rightarrow +\infty} J(u_n)
\]
as $u_n \rightharpoonup u$ in X, $n \rightarrow \infty$.

Lemma 1.6 (Minimization principle [2]). Let X be a reflexive Banach space and J a functional defined on X such that
\begin{enumerate}
\item[(1)] $\lim\|u\| \rightarrow +\infty J(u) = +\infty$ (coercivity condition),
\item[(2)] J is sequentially weakly lower semi-continuous.
\end{enumerate}

Then J is lower bounded on X and achieves its lower bound at some point u_0.

Definition 1.7. Let X be a real Banach space, $J \in C^1(X, \mathbb{R})$. If any sequence $(u_n) \subset X$ for which $(J(u_n))$ is bounded in \mathbb{R} and $J'(u_n) \rightarrow 0$ as $n \rightarrow +\infty$ in X' possesses a convergent subsequence, then we say that J satisfies the Palais–Smale condition (PS condition for brevity).
Lemma 1.8 (Mountain Pass Theorem, [11, Theorem 2.2], [12, Theorem 3.1]). Let X be a Banach space, and let $J \in C^1(X, \mathbb{R})$ satisfy $J(0) = 0$. Assume that J satisfies the (PS) condition and there exist positive numbers ρ and α such that

1. $J(u) \geq \alpha$ if $\|u\| = \rho$,
2. there exists $u_0 \in X$ such that $\|u_0\| > \rho$ and $J(u_0) < \alpha$.

Then there exists a critical point. It is characterized by

$$J'(u) = 0, \quad J(u) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = u_0 \}.$$

1.1 Variational setting

Take $v \in H^2_0(0, +\infty)$, and multiply the equation in Problem (1.1) by v and integrate over $(0, +\infty)$, so we get

$$\int_0^{+\infty} (u^{(4)}(t) - u''(t) + u(t))v(t)dt = \int_0^{+\infty} f(t, u(t))v(t)dt.$$

Hence

$$\int_0^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_0^{+\infty} f(t, u(t))v(t)dt.$$

This leads to the natural concept of a weak solution for Problem (1.1).

Definition 1.9. We say that a function $u \in H^2_0(0, +\infty)$ is a weak solution of Problem (1.1) if

$$\int_0^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_0^{+\infty} f(t, u(t))v(t)dt,$$

for all $v \in H^2_0(0, +\infty)$.

In order to study Problem (1.1), we consider the functional $J : H^2_0(0, +\infty) \to \mathbb{R}$ defined by

$$J(u) = \frac{1}{2}\|u\|^2 - \int_0^{+\infty} F(t, u(t))dt,$$

where

$$F(t, u) = \int_0^u f(t, s)ds.$$

2 Some embedding results

We begin this section by proving some continuous and compact embeddings. Here p and q (and M_1, M_2) are as in Section 1.

Lemma 2.1. $H^2_0(0, +\infty)$ embeds continuously in $C^1_{1,p,q}[0, +\infty)$.

Proof. For $u \in H^2_0(0, +\infty)$, we have

\begin{align*}
|p(t)u(t)| &= |p(+\infty)u(+\infty) - p(t)u(t)| \\
&= \left| \int_t^{+\infty} (pu)'(s)ds \right| \\
&\leq \left| \int_t^{+\infty} p'(s)u(s)ds \right| + \left| \int_t^{+\infty} p(s)u'(s)ds \right| \\
&\leq \left(\int_0^{+\infty} p^2(s)ds \right)^{\frac{1}{2}} \left(\int_t^{+\infty} u^2(s)ds \right)^{\frac{1}{2}} + \left(\int_0^{+\infty} p^2(s)ds \right)^{\frac{1}{2}} \left(\int_t^{+\infty} u^2(s)ds \right)^{\frac{1}{2}} \\
&\leq \max(\|p\|_{L^2}, \|p\|_{L^2})\|u\| \\
&\leq M_1\|u\|,
\end{align*}

and

\begin{align*}
|q(t)u'(t)| &= |q(+\infty)u'(+\infty) - q(t)u'(t)| \\
&= \left| \int_t^{+\infty} (qu')'(s)ds \right| \\
&\leq \left| \int_t^{+\infty} q'(s)u'(s)ds \right| + \left| \int_t^{+\infty} q(s)u''(s)ds \right| \\
&\leq \left(\int_0^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \left(\int_t^{+\infty} u^2(s)ds \right)^{\frac{1}{2}} + \left(\int_0^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \left(\int_t^{+\infty} u^2(s)ds \right)^{\frac{1}{2}} \\
&\leq \max(\|q\|_{L^2}, \|q\|_{L^2})\|u\| \\
&\leq M_2\|u\|.
\end{align*}

Hence $\|u\|_{C_t, \infty, p, q} \leq M\|u\|$, with $M = \max(M_1, M_2)$. \hfill \Box

The following compactness embedding is an important result.

Lemma 2.2. The embedding $H^2_0(0, +\infty) \hookrightarrow C^1_{t, p, q}[0, +\infty)$ is compact.

Proof. Let $D \subset H^2_0(0, +\infty)$ be a bounded set. Then it is bounded in $C^1_{t, p, q}[0, +\infty)$ by Lemma 2.1. Let $R > 0$ be such that for all $u \in D$, $\|u\| \leq R$. We will apply Lemma 1.2.

(a) D is equicontinuous on every compact interval of $[0, +\infty)$. Let $u \in D$ and $t_1, t_2 \in J \subset [0, +\infty)$ where J is a compact sub-interval. Using the Cauchy–Schwarz inequality, we have

\begin{align*}
|p(t_1)u(t_1) - p(t_2)u(t_2)| &= \left| \int_{t_2}^{t_1} (pu)'(s)ds \right| \\
&= \left| \int_{t_2}^{t_1} (p'(s)u(s) + u'(s)p(s))ds \right| \\
&\leq \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u^2(s)ds \right)^{\frac{1}{2}} + \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u^2(s)ds \right)^{\frac{1}{2}} \\
&\leq \max \left[\left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \right] \|u\| \\
&\leq R \max \left[\left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \right] \to 0,
\end{align*}
as \(|t_1 - t_2| \to 0\), and
\[
|q(t_1)u'(t_1) - q(t_2)u'(t_2)| = \left| \int_{t_2}^{t_1} (qu')'(s)ds \right|
\leq \left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{1/2} \left(\int_{t_2}^{t_1} u'^2(s)ds \right)^{1/2}
+ \left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{1/2} \left(\int_{t_2}^{t_1} u''^2(s)ds \right)^{1/2}
\leq \max \left[\left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{1/2}, \left(\int_{t_2}^{t_1} u'^2(s)ds \right)^{1/2} \right] \|u\|
\leq R \max \left[\left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{1/2}, \left(\int_{t_2}^{t_1} u'^2(s)ds \right)^{1/2} \right] \to 0,
\]
as \(|t_1 - t_2| \to 0\).

(b) \(D\) is equiconvergent at \(+\infty\). For \(t \in [0, +\infty)\) and \(u \in D\), using the fact that \((pu)(+\infty) = 0, (qu')(+\infty) = 0\) (note that \(u(\infty) = 0, u'(\infty) = 0\) and \(p, q\) are bounded) and using the Cauchy–Schwarz inequality, we have
\[
|(pu)(t) - (pu)(+\infty)| = \left| \int_{t}^{+\infty} (pu)'(s)ds \right|
= \left| \int_{t}^{+\infty} (p'(s)u(s) + u'(s)p(s)) ds \right|
\leq \max \left[\left(\int_{t}^{+\infty} p'^2(s)ds \right)^{1/2}, \left(\int_{t}^{+\infty} p^2(s)ds \right)^{1/2} \right] \|u\|
\leq R \max \left[\left(\int_{t}^{+\infty} p'^2(s)ds \right)^{1/2}, \left(\int_{t}^{+\infty} p^2(s)ds \right)^{1/2} \right] \to 0,
\]
as \(t \to +\infty\), and
\[
|(qu')(t) - (qu')(+\infty)| = \left| \int_{t}^{+\infty} (qu')'(s)ds \right|
= \left| \int_{t}^{+\infty} (q'(s)u'(s) + q(s)u''(s)) ds \right|
\leq \max \left[\left(\int_{t}^{+\infty} q'^2(s)ds \right)^{1/2}, \left(\int_{t}^{+\infty} q^2(s)ds \right)^{1/2} \right] \|u\|
\leq R \max \left[\left(\int_{t}^{+\infty} q'^2(s)ds \right)^{1/2}, \left(\int_{t}^{+\infty} q^2(s)ds \right)^{1/2} \right] \to 0,
\]
as \(t \to +\infty\). \qed

Corollary 2.3. \(C_{l,p,q}^1[0, +\infty)\) embeds continuously in \(C_{l,p}[0, +\infty)\).

Corollary 2.4. The embedding \(H^2_0(0, +\infty) \hookrightarrow C_{l,p}[0, +\infty)\) is continuous and compact.
3 Existence results

Here \(p \) (and \(M_1 \)) are as in Section 1.

Theorem 3.1. Assume that \(F \) satisfy the following conditions.

\((F1) \) There exist two constants \(1 < \alpha < \beta < 2 \) and two functions \(a, b \) with \(\frac{a}{p^\alpha} \in L^1([0, +\infty), [0, +\infty)), \)
\(\frac{b}{p^\beta} \in L^1([0, +\infty), [0, +\infty)) \) such that

\[
|F(t, x)| \leq a(t)|x|^\alpha, \quad \forall (t, x) \in [0, +\infty) \times \mathbb{R}, |x| \leq 1
\]

and

\[
|F(t, x)| \leq b(t)|x|^\beta, \quad \forall (t, x) \in [0, +\infty) \times \mathbb{R}, |x| > 1.
\]

\((F2) \) There exist an open bounded set \(I \subset [0, +\infty) \) and two constants \(\eta > 0 \) and \(0 < \gamma < 2 \) such that

\[
F(t, x) \geq \eta |x|^\gamma, \quad \forall (t, x) \in I \times \mathbb{R}, |x| \leq 1.
\]

Then Problem (1.1) has at least one nontrivial weak solution.

Proof.

Claim 1. We first show that \(J \) is well defined.

Let

\[
\Omega_1 = \{ t \geq 0, |u(t)| \leq 1 \}, \quad \Omega_2 = \{ t \geq 0, |u(t)| > 1 \}.
\]

Given \(u \in H^2_0(0, +\infty) \), it follows from (F1) and Corollary 2.4 that

\[
\int_0^{+\infty} |F(t, u(t))| dt = \int_{\Omega_1} |F(t, u(t))| dt + \int_{\Omega_2} |F(t, u(t))| dt
\]

\[
\leq \int_{\Omega_1} a(t)|u(t)|^\alpha dt + \int_{\Omega_2} b(t)|u(t)|^\beta dt
\]

\[
\leq \int_{\Omega_1} \frac{a(t)}{p^\alpha(t)}|p(t)u(t)|^\alpha dt + \int_{\Omega_2} \frac{b(t)}{p^\beta(t)}|p(t)u(t)|^\beta dt
\]

\[
\leq \left| \frac{a}{p^\alpha} \right|_{L^1} \|u\|^\alpha_{p, \infty} + \left| \frac{b}{p^\beta} \right|_{L^1} \|u\|^\beta_{p, \infty}
\]

\[
\leq M_1^\alpha \left| \frac{a}{p^\alpha} \right|_{L^1} \|u\|^\alpha + M_1^\beta \left| \frac{b}{p^\beta} \right|_{L^1} \|u\|^\beta.
\]

Thus

\[
|J(u)| \leq \frac{1}{2} \|u\|^2 + M_1^\alpha \left| \frac{a}{p^\alpha} \right|_{L^1} \|u\|^\alpha + M_1^\beta \left| \frac{b}{p^\beta} \right|_{L^1} \|u\|^\beta < +\infty.
\]

Claim 2. \(J \) is coercive.

From (F1) and Corollary 2.4, we have

\[
J(u) = \frac{1}{2} \|u\|^2 - \int_{\Omega_1} F(t, u(t)) dt - \int_{\Omega_2} F(t, u(t)) dt
\]

\[
\geq \frac{1}{2} \|u\|^2 - M_1^\alpha \left| \frac{a}{p^\alpha} \right|_{L^1} \|u\|^\alpha - M_1^\beta \left| \frac{b}{p^\beta} \right|_{L^1} \|u\|^\beta. \tag{3.1}
\]

Now since \(0 < \alpha < \beta < 2 \), then (3.1) implies that

\[
\lim_{\|u\| \to +\infty} J(u) = +\infty.
\]
Consequently, J is coercive.

Claim 3. J is sequentially weakly lower semi-continuous.

Let (u_n) be a sequence in $H_0^2(0, +\infty)$ such that $u_n \rightharpoonup u$ as $n \to +\infty$ in $H_0^2(0, +\infty)$. Then there exists a constant $A > 0$ such that $\|u_n\| \leq A$, for all $n \geq 0$ and $\|u\| \leq A$. Now (see Corollary 2.4) $(p(t)u_n(t))$ converges to $(p(t)u(t))$ as $n \to +\infty$ for $t \in [0, +\infty)$. Since F is continuous, we have $F(t,u_n(t)) \to F(t,u(t))$ as $n \to +\infty$, and using (F1) we have

$$|F(t,u_n(t))| \leq a(t)|u_n(t)|^\alpha + b(t)|u_n(t)|^{\beta}$$

$$\leq \frac{a(t)}{p^a(t)}|p(t)u_n(t)|^\alpha + \frac{b(t)}{p^\beta(t)}|p(t)u_n(t)|^{\beta}$$

$$\leq \frac{a(t)}{p^a(t)}\|u_n\|_{\alpha,p}^\alpha + \frac{b(t)}{p^\beta(t)}\|u_n\|_{\alpha,p}^{\beta}$$

$$\leq \frac{a(t)}{p^a(t)}M^\alpha_1\|u_n\|^\alpha + \frac{b(t)}{p^\beta(t)}M^\beta_1\|u_n\|^{\beta}$$

$$\leq \frac{a(t)}{p^a(t)}M^\alpha_1A^\alpha + \frac{b(t)}{p^\beta(t)}M^\beta_1A^\beta,$$

so from the Lebesgue Dominated Convergence Theorem we have

$$\lim_{n \to +\infty} \int_0^{+\infty} F(t,u_n(t))dt = \int_0^{+\infty} F(t,u(t))dt.$$

The norm in the reflexive Banach space is sequentially weakly lower semi-continuous, so

$$\liminf_{n \to +\infty} \|u_n\| \geq \|u\|.$$

Thus one has

$$\liminf_{n \to +\infty} J(u_n) = \liminf_{n \to +\infty} \left(\frac{1}{2}\|u_n\|^2 - \int_0^{+\infty} F(t,u_n(t))dt\right)$$

$$\geq \frac{1}{2}\|u\|^2 - \int_0^{+\infty} F(t,u(t))dt = J(u).$$

Then, J is sequentially weakly lower semi-continuous.

From Lemma 1.6, J has a minimum point u_0 which is a critical point of J.

Claim 4. We show that $u_0 \neq 0$.

Let $u_1 \in H_0^2(0, +\infty) \setminus \{0\}$ and $|u_1(t)| \leq 1$, for all $t \in I$. Then from (F2), we have

$$J(su_1) = \frac{s^2}{2}\|u_1\|^2 - \int_0^{+\infty} F(t,su_1(t))dt$$

$$\leq \frac{s^2}{2}\|u_1\|^2 - \int_\gamma |su_1(t)|^\gamma dt$$

$$\leq \frac{s^2}{2}\|u_1\|^2 - s^\gamma \int_\gamma |u_1(t)|^\gamma dt, \quad 0 < s < 1.$$

Since $0 < \gamma < 2$, it follows that $J(su_1) < 0$ for $s > 0$ small enough. Hence $J(u_0) < 0$, and therefore u_0 is a nontrivial critical point of J.

Finally, it is easy to see that under (F1), the functional J is Gâteaux differentiable and the Gâteaux derivative at a point $u \in X$ is

$$\langle f'(u), v \rangle = \int_0^{+\infty} \left(u''(t)v''(t) + u'(t)v'(t) + u(t)v(t)\right)dt - \int_0^{+\infty} f(t,u(t))v(t)dt,$$ \hspace{1cm}(3.2)
for all \(v \in H^2_0(0, +\infty) \). Therefore \(u \) is a weak solution of Problem (1.1).

Theorem 3.2. Assume that \(f \) satisfies the following assumptions.

(F3) There exist nonnegative functions \(\varphi, g \) such that \(g \in C([R, 0, +\infty]) \) with

\[
|f(t, x)| \leq \varphi(t)g(x), \text{ for all } t \in [0, +\infty) \text{ and all } x \in \mathbb{R},
\]

and for any constant \(R > 0 \) there exists a nonnegative function \(\psi_R \) with \(\varphi \psi_R \in L^1(0, +\infty) \) and

\[
\sup \left\{ g \left(\frac{y}{p(t)} \right) : y \in [-R, R] \right\} \leq \psi_R(t) \quad \text{for a.e. } t \geq 0.
\]

(F4)

\[
\frac{1}{a(t)} F(t, \frac{1}{p(t)}x) = o(|x|^2) \quad \text{as } x \to 0
\]

uniformly in \(t \in [0, +\infty) \) for some function \(a \in L^1(0, +\infty) \cap C[0, +\infty) \).

(F5) There exists a positive function \(c_1 \) and a nonnegative function \(c_2 \) with \(c_1, c_2 \in L^1(0, \infty) \), and \(\mu > 2 \) such that

(a) \(F(t, x) \geq c_1(t)|x|^\mu - c_2(t), \) for \(t \geq 0, \forall x \in \mathbb{R} \setminus \{0\} \),

(b) \(\mu F(t, x) \leq x f(t, x), \) for \(t \geq 0, \forall x \in \mathbb{R} \).

Then Problem (1.1) has at least one nontrivial weak solution.

Proof. We have \(J(0) = 0 \).

Claim 1. \(J \) satisfies the (PS) condition.

Assume that \((u_n)_{n \in \mathbb{N}} \subset H^2_0(0, +\infty) \) is a sequence such that \((J(u_n))_{n \in \mathbb{N}} \) is bounded and \(J'(u_n) \to 0 \) as \(n \to +\infty \). Then there exists a constant \(d > 0 \) such that

\[
|J(u_n)| \leq d, \quad \|J'(u_n)\|_{E'} \leq d \mu, \quad \forall n \in \mathbb{N}.
\]

From (F5)(b) we have

\[
2d + 2d\|u_n\| \geq 2J(u_n) - \frac{2}{\mu} (J'(u_n), u_n)
\]

\[
\geq \left(1 - \frac{2}{\mu} \right) \|u_n\|^2 + 2 \left[\int_0^{+\infty} \left(\frac{1}{\mu} u_n(t) f(t, u_n(t)) - F(t, u_n(t)) \right) dt \right]
\]

\[
\geq \left(1 - \frac{2}{\mu} \right) \|u_n\|^2.
\]

Since \(\mu > 2 \), then \((u_n)_{n \in \mathbb{N}} \) is bounded in \(H^2_0(0, +\infty) \).

Now, we show that \((u_n) \) converges strongly to some \(u \) in \(H^2_0(0, +\infty) \). Since \((u_n) \) is bounded in \(H^2_0(0, +\infty) \), there exists a subsequence of \((u_n) \) still denoted by \((u_n) \) such that \((u_n) \) converges weakly to some \(u \) in \(H^2_0(0, +\infty) \). There exists a constant \(c > 0 \) such that \(\|u_n\| \leq c \). Now (see Corollary 2.4) \((p(t)u_n(t)) \) converges to \(p(t)u(t) \) on \([0, +\infty)\). We have \(f(t, u_n(t)) \to f(t, u(t)) \) and

\[
|f(t, u_n(t))| = \left| f(t, \frac{1}{p(t)} p(t)u_n(t)) \right|
\]

\[
\leq \varphi(t)g \left(\frac{1}{p(t)} p(t)u_n(t) \right)
\]

\[
\leq \varphi(t) \psi_{\ell M_1}(t),
\]

Fourth-order BVP via critical point theory
and using the Lebesgue Dominated Convergence Theorem, we have

$$\lim_{n \to +\infty} \int_0^{+\infty} (f(t, u_n(t)) - f(t, u(t))) (u_n(t) - u(t)) \, dt = 0. \tag{3.3}$$

Since \(\lim_{n \to +\infty} f'(u_n) = 0 \) and \((u_n)\) converges weakly to some \(u \), we have

$$\lim_{n \to +\infty} \langle f'(u_n) - f'(u), u_n - u \rangle = 0. \tag{3.4}$$

It follows from (3.2) that

$$\langle f'(u_n) - f'(u), u_n - u \rangle = \|u_n - u\|^2 - \int_0^{+\infty} (f(t, u_n(t)) - f(t, u(t))) (u_n(t) - u(t)) \, dt.$$}

Hence \(\lim_{n \to +\infty} \|u_n - u\| = 0 \). Thus \((u_n) \) converges strongly to \(u \) in \(H_0^1(0, +\infty) \), so \(f \) satisfies the (PS) condition.

Claim 2. \(f \) satisfies assumption (1) of Lemma 1.8. Let \(0 < \varepsilon < \frac{1}{|a|_{L^1}} \). From (F4), there exists \(0 < \delta < 1 \) such that

$$\left| \frac{1}{a(t)} F(t, \frac{1}{p(t)} x) \right| \leq \frac{\varepsilon}{2} |x|^2, \quad \text{for } t \in [0, +\infty) \text{ and } |x| \leq \delta.$$}

Using Corollary 2.4, we have

$$\int_0^{+\infty} |F(t, u(t))| \, dt = \int_0^{+\infty} \left| F\left(t, \frac{1}{p(t)} u(t) \right) \right| \, dt \leq \int_0^{+\infty} \frac{\varepsilon}{2} |a(t)| p^2(t) |u(t)|^2 \, dt \leq \frac{\varepsilon}{2} M_1^2 |a|_{L^1} \|u\|^2,$$

whenever \(\|u\|_{\infty, p} \leq \delta \).

Let \(0 < \rho \leq \frac{\delta}{\alpha} \) and \(\alpha = \frac{1}{2} (1 - \varepsilon |a|_{L^1} M_1^2) \rho^2 \). Then for \(\|u\| = \rho \) (note \(\|u\|_{\infty, p} \leq \delta \)), we have

$$f(u) = \frac{1}{2} \|u\|^2 - \int_0^{+\infty} F(t, u(t)) \, dt \geq \frac{1}{2} (1 - \varepsilon |a|_{L^1} M_1^2) \|u\|^2 = \alpha,$$

so assumption (1) in Lemma 1.8 is satisfied.

Claim 3. \(f \) satisfies assumption (2) of Lemma 1.8. By (F5)(a) we have for some \(v_0 \in H_0^1(0, +\infty), \ v_0 \neq 0, \)

$$f(\xi v_0) = \frac{1}{2} \xi^2 \|v_0\|^2 - \int_0^{+\infty} F(t, \xi v_0(t)) \, dt \leq \frac{1}{2} \xi^2 \|v_0\|^2 - |\xi|^\mu \int_0^{+\infty} c_1(t) \|v_0(t)\|^\mu \, dt + \int_0^{+\infty} c_2(t) \, dt.$$

Now since \(\mu > 2 \), then for \(u_0 = \xi v_0, \; f(u_0) \leq 0, \; \text{as } \xi \to +\infty, \) so assumption (2) in Lemma 1.8 is satisfied. From Lemma 1.8, \(f \) possesses a critical point which is a nontrivial weak solution of Problem (1.1).
As an example of the above theorem, take \(f(t, x) = \frac{5}{2} \exp(-t)|x|^\frac{1}{2}x \). To see this take
\[
c_1(t) = \exp(-t), \quad c_2(t) = 0,
\]
\[
\mu = \frac{5}{2}, \quad a(t) = \frac{1}{(1+t)^2}, \quad p(t) = \frac{1}{1+t},
\]
\[
\phi(t) = \frac{5}{2}e^{-t}, \quad g(x) = |x|^\frac{3}{2} \quad \text{and} \quad \psi_R(t) = (1+t)^\frac{3}{2}R^\frac{3}{2}.
\]

References

