Regularity in Orlicz spaces for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition*

Kelei Zhang†

Department of Applied Mathematics, Northwestern Polytechnical University,
Xi’an, Shaanxi, 710129, PR China

Abstract: The purpose of this paper is to obtain the global regularity in Orlicz spaces for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition.

Keywords: nondivergence elliptic operator; regularity, Orlicz space; potential; reverse Hölder condition.

1 Introduction

In this paper we consider the following nondivergence elliptic operator

$$Lu \equiv Au + Vu \equiv - \sum_{i,j=1}^{n} a_{ij}(x)u_{x_i x_j} + Vu,$$ (1.1)

where $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n (n \geq 3)$, and establish the regularity in Orlicz spaces for (1.1). It will be assumed that the following assumptions on the coefficients of the operator A and the potential V are satisfied

$(H_1) \ a_{ij} \in L^\infty(\mathbb{R}^n)$ and $a_{ij} = a_{ji}$ for all $i, j = 1, 2, \ldots, n$, and there exists a positive constant Λ such that

$$\Lambda^{-1} |\xi|^2 \leq \sum_{i,j=1}^{n} a_{ij}(x)\xi_i \xi_j \leq \Lambda |\xi|^2$$

*This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271299, 11001221) and Natural Science Foundation Research Project of Shaanxi Province (Grant No. 2012JM1014).

†E-mail address: eaststonezhang@126.com
for any \(x \in \mathbb{R}^n \) and \(\xi \in \mathbb{R}^n \);

\((H_2)\) \(a_{ij}(x) \in VMO(\mathbb{R}^n) \), which means that for \(i, j = 1, 2, \ldots, n \),

\[
\eta_{ij}(r) = \sup_{\rho \leq r} \sup_{x \in \mathbb{R}^n} \left(|B_\rho(x)|^{-1} \int_{B_\rho(x)} |a_{ij}(y) - a_{ij}^B| \, dy \right) \to 0, \quad r \to 0^+,
\]

where \(a_{ij}^B = |B_\rho(x)|^{-1} \int_{B_\rho(x)} a_{ij}(y) \, dy \);

\((H_3)\) \(V \in B_q \) for \(n/2 \leq q < \infty \), which means that \(V \in L^q_{\text{loc}}(\mathbb{R}^n), V \geq 0 \), and there exists a positive constant \(c_1 \) such that the reverse Hölder inequality

\[
\left(|B|^{-1} \int_B V(x)^q \, dx \right)^{1/q} \leq c_1 \left(|B|^{-1} \int_B V(x) \, dx \right)
\]

holds for every ball \(B \) in \(\mathbb{R}^n \).

Note that when we say \(V \in B_\infty \), it means

\[
\sup_B V(x) \leq c_1 \left(|B|^{-1} \int_B V(x) \, dx \right).
\]

In fact, if \(V \in B_\infty \), then it implies that \(V \in B_q \) for \(1 < q < \infty \).

Regularity theory for elliptic operators with potentials satisfying a reverse Hölder condition has been studied by many authors (see [4], [9]–[12], [14], [15]). When \(A \) is the Laplace operator and \(V \in B_q \) \((n/2 \leq q < \infty) \), Shen [10] derived \(L^p \) boundedness for \(1 < p \leq q \) and showed that the range of \(p \) is optimal. If \(A \) is the Laplace operator and \(V \in B_\infty \), an extension of \(L^p \) estimates to the global Orlicz estimates was given by Yao [14] with modifying the iteration-covering method introduced by Acerbi and Mingione [1]. For \(a_{ij} \in C^1(\mathbb{R}^n) \) and \(V \in B_\infty \), regularity theory in Orlicz spaces for the operators \(\sum_{i,j=1}^n \partial_{x_i} (a_{ij} \partial_{x_j}) + V \) was proved by Yao [15]. Recently, under the assumptions \((H_1)-(H_3)\), the global \(L^p(\mathbb{R}^n) \) estimates for \(L \) in (1.1) has been deduced by Bramanti et al [4].

In this paper we will establish global estimates in Orlicz spaces for \(L \) which extends results in [4] to the case of the general Orlicz spaces. Our approach is based on an iteration-covering lemma (Lemma 3.1), the technique of “S. Agmon’s idea” (see [3], p. 124) and an approximation procedure.

The definitions of Yong functions \(\phi \), Orlicz spaces \(L^\phi(\mathbb{R}^n) \), Orlicz–Sobolev spaces \(W^2 L^\phi(\mathbb{R}^n), W^2_{\text{loc}} L^\phi(\mathbb{R}^n) \), and their properties will be described in Section 2.

We now state the main result of this paper.
Theorem 1.1 Let ϕ be a Young function and satisfy the global $\Delta_2 \cap \nabla_2$ condition. Assume that the operator L satisfies the assumptions (H_1), (H_2) and (H_3) for $q \geq \max \{n/2, \alpha_1\}$, $f \in L^\phi(\mathbb{R}^n)$. If $u \in W^2_V L^\phi(\mathbb{R}^n)$ satisfies

$$Lu - \mu u = f, \quad x \in \mathbb{R}^n, \quad (1.2)$$

then there exists a constant $C > 0$ such that for any $\mu \gg 1$ large enough, we have

$$\mu^{\alpha_2} \int_{\mathbb{R}^n} \phi(|u|) dx + \mu^{\alpha_2/2} \int_{\mathbb{R}^n} \phi(|Du|) dx + \int_{\mathbb{R}^n} \phi(|Vu|) dx + \int_{\mathbb{R}^n} \phi(|D^2u|) dx \leq C \int_{\mathbb{R}^n} \phi(|f|) dx, \quad (1.3)$$

where the constants α_1 and α_2 appear in Orlicz spaces, see (2.4), C depends only on n, q, Λ, c_1, α_1, α_2 and the VMO moduli of the leading coefficients a_{ij}.

The proof of Theorem 1.1 is based on the following result.

Theorem 1.2 Under the same assumptions on ϕ, a_{ij}, V, q, f as in Theorem 1.1, let $u \in C_0^\infty(\mathbb{R}^n)$ satisfy $Lu = f$ in \mathbb{R}^n. Then there exists a constant $C > 0$ such that

$$\int_{\mathbb{R}^n} \phi(|Du|) dx + \int_{\mathbb{R}^n} \phi(|Vu|) dx \leq C \left\{ \int_{\mathbb{R}^n} \phi(|f|) dx + \int_{\mathbb{R}^n} \phi(|u|) dx \right\}, \quad (1.4)$$

where C depends only on n, q, Λ, c_1, a, K and the VMO moduli of a_{ij}.

Note that Theorem 1.2 and Definition 2.9 easily imply the following result by using the monotonicity, convexity of ϕ, (2.2) and Remark 2.7.

Corollary 1.3 Under the same assumptions on ϕ, a_{ij}, V, q, f as in Theorem 1.1, let $u \in W^2_V L^\phi(\mathbb{R}^n)$ satisfy $Lu = f$ in \mathbb{R}^n. Then there exists a constant $C > 0$ such that

$$\int_{\mathbb{R}^n} \phi(|D^2u|) dx + \int_{\mathbb{R}^n} \phi(|Vu|) dx \leq C \left\{ \int_{\mathbb{R}^n} \phi(|f|) dx + \int_{\mathbb{R}^n} \phi(|u|) dx \right\},$$

where C depends only on n, q, Λ, c_1, a, K and the VMO moduli of a_{ij}.

Remark 1.4 When we take $\phi(t) = t^p$, $t \geq 0$ for $1 < p < \infty$, then (1.4) is reduced to the classical L^p estimates (see [4, Theorem 1]).

This paper will be organized as follows. In Section 2 some basic facts about Orlicz spaces and Orlicz–Sobolev spaces are recalled. In Section 3 we prove Theorem 1.2 by describing an iteration-covering lemma (Lemma 3.1) and using the
results in [4]. Section 4 is devoted to the proof of Theorem 1.1. We first assume
\(u \in C_0^\infty(B_{R_0}/2) \) satisfying (1.2) and prove that (1.3) is valid by using Theorem
1.2 and “S. Agmon’s idea” (see [3], p. 124); then we show that the assumption
\(u \in C_0^\infty(B_{R_0}/2) \) can be removed by an approximation procedure and a covering
lemma in [5].

Dependence of constants. Throughout this paper, the letter \(C \) denotes a posi-
tive constant which may vary from line to line.

2 Preliminaries

We collect here some facts about Orlicz spaces and Orlicz–Sobolev spaces which
will be needed in the following. For more properties, we refer the readers to [2] and
[8].

We use the following notation:

\[
\Phi = \{ \phi : [0, +\infty) \to [0, +\infty) \mid \phi \text{ is increasing and convex} \}.
\]

Definition 2.1 A function \(\phi \in \Phi \) is said to be a Young function if

\[
\phi(0) = 0, \quad \lim_{t \to +\infty} \frac{\phi(t)}{t} = +\infty, \quad \lim_{t \to 0^+} \frac{\phi(t)}{t} = \lim_{t \to +\infty} \frac{t}{\phi(t)} = 0. \tag{2.1}
\]

Definition 2.2 A Young function \(\phi \) is said to satisfy the global \(\Delta_2 \) condition de-
noted by \(\phi \in \Delta_2 \), if there exists a positive constant \(K \) such that for any \(t > 0 \),

\[
\phi(2t) \leq K \phi(t). \tag{2.2}
\]

Definition 2.3 A Young function \(\phi \) is said to satisfy the global \(\nabla_2 \) condition de-
noted by \(\phi \in \nabla_2 \), if there exists a positive constant \(a > 1 \) such that for any \(t > 0 \),

\[
\phi(at) \geq 2a\phi(t). \tag{2.3}
\]

The following result was obtained in [7].

Lemma 2.4 If \(\phi \in \Delta_2 \cap \nabla_2 \), then for any \(t > 0 \) and \(0 < \theta_2 \leq 1 \leq \theta_1 < +\infty \),

\[
\phi(\theta_1 t) \leq K \theta_1^{\alpha_1} \phi(t) \quad \text{and} \quad \phi(\theta_2 t) \leq 2 a \theta_2^{\alpha_2} \phi(t), \tag{2.4}
\]

where \(\alpha_1 = \log_2 K, \alpha_2 = \log_2 a + 1 \) and \(\alpha_1 \geq \alpha_2 \).

Definition 2.5 (Orlicz spaces) Given a Young function \(\phi \), we define the Orlicz
class \(K^\phi(\mathbb{R}^n) \) which consists of all the measurable functions \(g : \mathbb{R}^n \to \mathbb{R} \) satisfying

\[
\int_{\mathbb{R}^n} \phi(|g|) dx < \infty
\]

and the Orlicz space \(L^\phi(\mathbb{R}^n) \) which is the linear hull of \(K^\phi(\mathbb{R}^n) \).

EJQTDE, 2013 No. 78, p. 4
In the Orlicz spaces $L^\phi(\mathbb{R}^n)$, we use the following Luxembourg norm
\[
\|u\|_{L^\phi(\mathbb{R}^n)} = \inf \left\{k > 0 : \int_{\mathbb{R}^n} \phi(|u|/k) \, dx \leq 1 \right\}.
\] (2.5)
The space $L^\phi(\mathbb{R}^n)$ equipped with the Luxembourg norm $\|\cdot\|_{L^\phi(\mathbb{R}^n)}$ is a Banach space. In general, $K^\phi \subset L^\phi$. Moreover, if ϕ satisfies the global Δ_2 condition, then $K^\phi = L^\phi$ and C^∞_0 is dense in L^ϕ (see [2], pp. 266–274).

Definition 2.6 (Convergence in mean) A sequence $\{u_k\}$ of functions in $L^\phi(\mathbb{R}^n)$ is said to converge in mean to $u \in L^\phi(\mathbb{R}^n)$ if
\[
\lim_{k \to \infty} \int_{\mathbb{R}^n} \phi(|u_k(x) - u(x)|) \, dx = 0.
\]

Remark 2.7 (see [2], p. 270)
(i) The norm convergence in $L^\phi(\mathbb{R}^n)$ implies the mean convergence.
(ii) If $\phi \in \Delta_2$, then the mean convergence implies the norm convergence.

Definition 2.8 (Orlicz–Sobolev spaces) The Orlicz–Sobolev space $W^{2,L^\phi}(\mathbb{R}^n)$ is the set of all functions u which satisfy $|D^\alpha u(x)| \in L^\phi(\mathbb{R}^n)$ for $0 \leq |\alpha| \leq 2$. The norm is defined by
\[
\|u\|_{W^{2,L^\phi}(\mathbb{R}^n)} = \|u\|_{L^\phi(\mathbb{R}^n)} + \|Du\|_{L^\phi(\mathbb{R}^n)} + \|D^2u\|_{L^\phi(\mathbb{R}^n)},
\]
where $Du(x) = \{u_{x_i}\}_{i=1}^n$, $D^2u(x) = \{u_{x_i x_j}\}_{i,j=1}^n$, $\|Du\|_{L^\phi(\mathbb{R}^n)} = \sum_{i=1}^n \|u_{x_i}\|_{L^\phi(\mathbb{R}^n)}$, $\|D^2u\|_{L^\phi(\mathbb{R}^n)} = \sum_{i,j=1}^n \|u_{x_i x_j}\|_{L^\phi(\mathbb{R}^n)}$.

The following definition is analogous to the definition of the space $W^{2,p}_V(\mathbb{R}^n)$ introduced by Bramanti, Brandolini, Harboure and Viviani in [4].

Definition 2.9 The space $W^{2,L^\phi}_V(\mathbb{R}^n)$ is the closure of $C_0^\infty(\mathbb{R}^n)$ in the norm
\[
\|u\|_{W^{2,L^\phi}_V(\mathbb{R}^n)} = \|u\|_{W^{2,L^\phi}(\mathbb{R}^n)} + \|Vu\|_{L^\phi(\mathbb{R}^n)}.
\]

Remark 2.10 (see e.g. [13]) If $g \in L^\phi(\mathbb{R}^n)$, then $\int_{\mathbb{R}^n} \phi(|g|) \, dx$ can be easily rewritten in an integral form
\[
\int_{\mathbb{R}^n} \phi(|g|) \, dx = \int_0^\infty \{|x \in \mathbb{R}^n : |g| > t\} d[\phi(t)].
\] (2.6)
As usual, we denote by $B_R(x)$ the open ball in \mathbb{R}^n of radius R centered at x and $B_R = B_R(0)$.

EJQTDE, 2013 No. 78, p. 5
3 Proof of Theorem 1.2

Before the proof of Theorem 1.2, some notions and two useful lemmas are given. Let us introduce the notation

\[p = \frac{1 + \alpha_2}{2} > 1. \]

For \(u \in C_0^\infty(\mathbb{R}^n) \) satisfying \(Lu = f \), set

\[\lambda_0^p = \int_{\mathbb{R}^n} |Vu|^p dx + \varepsilon^{-p} \left(\int_{\mathbb{R}^n} |f|^p dx + \int_{\mathbb{R}^n} |u|^p dx \right), \]

where \(\varepsilon \in (0, 1) \) is a small enough constant to be determined later. Let

\[u_\lambda = \frac{u}{\lambda_0^p} \quad \text{and} \quad f_\lambda = \frac{f}{\lambda_0^p}, \quad \text{for any } \lambda > 0. \]

Then \(u_\lambda \) satisfies \(Lu_\lambda = f_\lambda \). For any ball \(B \) in \(\mathbb{R}^n \), we use the notations

\[J_\lambda[B] = \frac{1}{|B|} \int_B |Vu_\lambda|^p dx + \frac{1}{\varepsilon^p |B|} \left(\int_B |f_\lambda|^p dx + \int_B |u_\lambda|^p dx \right) \]

and

\[E_\lambda(1) = \{ x \in \mathbb{R}^n : |Vu_\lambda| > 1 \}. \]

The following lemma is just an analogous version of the result given in [15, Lemma 2.2]. Here the selection of \(\lambda_0 \) and the condition of \(V \) are different from [15].

Lemma 3.1 (Iteration-covering lemma) For any \(\lambda > 0 \), there exists a family of disjoint balls \(\{ B_{\rho_{x_i}}(x_i) \} \) with \(x_i \in E_\lambda(1) \) and \(\rho_{x_i} = \rho(x_i, \lambda) > 0 \) such that

\[J_\lambda[B_{\rho_{x_i}}(x_i)] = 1, \quad J_\lambda[B_{\rho'}(x_i)] < 1 \quad \text{for any } \rho > \rho_{x_i}, \quad (3.1) \]

and

\[E_\lambda(1) \subset \bigcup_{i \geq 1} B_{5\rho_{x_i}}(x_i) \bigcup F, \quad (3.2) \]

where \(F \) is a zero measure set. Moreover,

\[|B_{\rho_{x_i}}(x_i)| \leq \frac{3^{p-1}}{3^{p-1} - 1} \left\{ \int_{\{ x \in B_{\rho_{x_i}}(x_i) : |Vu_\lambda| \geq \frac{1}{4} \}} |Vu_\lambda|^p dx \right. \]

\[+ \varepsilon^{-p} \int_{\{ x \in B_{\rho_{x_i}}(x_i) : |f_\lambda| \geq \frac{1}{4} \}} |f_\lambda|^p dx + \varepsilon^{-p} \int_{\{ x \in B_{\rho_{x_i}}(x_i) : |u_\lambda| \geq \frac{1}{4} \}} |u_\lambda|^p dx \left. \right\}. \quad (3.3) \]
We omit the proof of Lemma 3.1 because it is actually similar to that of [15, Lemma 2.2].

In analogy with [4, Theorem 13], the following lemma holds by using [4, Theorem 2, Theorem 3], and standard techniques involving cutoff functions and the interpolation inequality (see e.g. [6]).

Lemma 3.2 Under the assumptions \((H_1)–(H_3)\), for any \(\gamma \in (1,q]\), there exists a positive constant \(C\) such that for any \(x_i, \rho_{x_i}\) as in Lemma 3.1 and \(u \in C_0^\infty(\mathbb{R}^n)\),

\[
\int_{B_{5\rho_{x_i}}(x_i)} |Vu|^\gamma dx \leq C \left\{ \int_{B_{10\rho_{x_i}}(x_i)} |Lu|^\gamma dx + \int_{B_{10\rho_{x_i}}(x_i)} |u|^\gamma dx \right\},
\]

where \(C\) depends only on \(n, \gamma, q, c_1, \Lambda\) and the VMO moduli of \(a_{ij}\).

Proof of Theorem 1.2. In order to prove (1.4), the first step is to check the following estimate

\[
\int_{\mathbb{R}^n} \phi (|Vu|) dx \leq C \left(\int_{\mathbb{R}^n} \phi (|f|) dx + \int_{\mathbb{R}^n} \phi (|u|) dx \right). \tag{3.4}
\]

Since \(u \in C_0^\infty(\mathbb{R}^n)\), then there exists some constant \(R_0 > 0\) such that \(u\) is compactly supported in \(B_{R_0}\). It follows from \(q \geq \max\{n/2, \alpha_1\}\) and (2.4) that

\[
\begin{align*}
\int_{\mathbb{R}^n} \phi (|Vu|) dx &= \int_{\{x \in \mathbb{R}^n : |Vu| \geq 1\}} \phi (|Vu|) dx + \int_{\{x \in \mathbb{R}^n : |Vu| \leq 1\}} \phi (|Vu|) dx \\
&\leq K \phi (1) \int_{\mathbb{R}^n} |Vu|^\alpha_1 dx + 2a \phi (1) \int_{\mathbb{R}^n} |Vu|^\alpha_2 dx \\
&\leq C \left(\sup_{B_{R_0}} |u|^\alpha_1 + \sup_{B_{R_0}} |u|^\alpha_2 \right) \left(\int_{B_{R_0}} |V|^\alpha_1 dx + \int_{B_{R_0}} |V|^\alpha_2 dx \right) \\
&< \infty,
\end{align*}
\]

that is \(|Vu| \in L^\phi(\mathbb{R}^n)\). Hence by (2.6), it yields

\[
\int_{\mathbb{R}^n} \phi (|Vu|) dx = \int_0^\infty |\{x \in \mathbb{R}^n : |Vu| > \lambda \lambda_0 \}| d[\phi(\lambda \lambda_0)].
\]

Due to (3.2),

\[
|\{x \in \mathbb{R}^n : |Vu| > \lambda \lambda_0 \}| \leq \sum_{i=1}^\infty \left| \{x \in B_{5\rho_{x_i}}(x_i) : |Vu| > 1 \} \right|.
\]

EJQTDE, 2013 No. 78, p. 7
Thus the key is to estimate \(|\{x \in B_{5\rho_i}(x_i) : |Vu_\lambda| > 1\}|\). Applying Lemma 3.2, (3.1) and (3.3) we deduce

\[
\left|\{x \in B_{5\rho_i}(x_i) : |Vu_\lambda| > 1\}\right| \\
\leq \int_{B_{5\rho_i}(x_i)} |Vu_\lambda|^p dx \\
\leq C \left\{ \int_{B_{10\rho_i}(x_i)} |f_\lambda|^p dx + \int_{B_{10\rho_i}(x_i)} |u_\lambda|^p dx \right\} \\
\leq \varepsilon^p C(p, n) \left| B_{\rho_i}(x_i) \right| \\
\leq C(p, n) \left\{ \varepsilon^p \int_{\{x \in B_{\rho_i}(x_i) : |Vu_\lambda| > \frac{1}{3}\}} |Vu_\lambda|^p dx + \int_{\{x \in B_{\rho_i}(x_i) : |f_\lambda| > \frac{1}{3}\}} |f_\lambda|^p dx \\
+ \int_{\{x \in B_{\rho_i}(x_i) : |u_\lambda| > \frac{1}{3}\}} |u_\lambda|^p dx \right\}.
\]

Set \(\tilde{\lambda} = \lambda_0 \lambda\) and observe that

\[
\int_{\mathbb{R}^n} \phi(|Vu|) dx = \int_0^\infty \left| \left\{ x \in \mathbb{R}^n : |Vu| > \tilde{\lambda} \right\} \right| d[\phi(\tilde{\lambda})] \\
\leq C(p, n) \varepsilon^p \int_0^\infty \tilde{\lambda}^{-p} \left\{ \int_{\{x \in \mathbb{R}^n : |Vu| > \frac{1}{3}\}} |Vu|^p dx \right\} d[\phi(\tilde{\lambda})] \\
+ C(p, n) \int_0^\infty \tilde{\lambda}^{-p} \left\{ \int_{\{x \in \mathbb{R}^n : |f| > \frac{1}{3}\}} |f|^p dx \right\} d[\phi(\tilde{\lambda})] \\
+ C(p, n) \int_0^\infty \tilde{\lambda}^{-p} \left\{ \int_{\{x \in \mathbb{R}^n : |u| > \frac{1}{3}\}} |u|^p dx \right\} d[\phi(\tilde{\lambda})] \\
= : C(p, n) (\varepsilon^p I_1 + I_2 + I_3).
\]

By Fubini’s theorem, integration by parts and (2.4), it implies that

\[
I_1 = \int_{\mathbb{R}^n} |Vu|^p \left\{ \int_0^{3|Vu|} \frac{d\phi(\tilde{\lambda})}{\tilde{\lambda}^p} \right\} dx \\
= \frac{1}{3^p} \int_{\mathbb{R}^n} \phi(3|Vu|) dx + p \int_{\mathbb{R}^n} |Vu|^p \left\{ \int_0^{3|Vu|} \frac{d\phi(\tilde{\lambda})}{\tilde{\lambda}^{p+1}} \right\} dx \\
\leq \frac{1}{3^p} \int_{\mathbb{R}^n} \phi(3|Vu|) dx + \frac{2ap}{3^p(\alpha_2 - p)} \int_{\mathbb{R}^n} \phi(3|Vu|) dx \\
\leq C(n, p, a, K) \int_{\mathbb{R}^n} \phi(|Vu|) dx.
\]

Similarly,

\[
I_2 \leq C(n, p, a, K) \varepsilon^{p-\alpha_1} \int_{\mathbb{R}^n} \phi(|f|) dx
\]

EJQTDE, 2013 No. 78, p. 8
and
\[I_3 \leq C(n, p, a, K)\varepsilon^{p-\alpha_1} \int_{\mathbb{R}^n} \phi(|u|)dx. \]

Therefore,
\[\int_{\mathbb{R}^n} \phi(|Vu|)dx \leq C \left\{ \varepsilon^p \int_{\mathbb{R}^n} \phi(|Vu|)dx + \varepsilon^{p-\alpha_1} \int_{\mathbb{R}^n} \phi(|f|)dx + \varepsilon^{p-\alpha_1} \int_{\mathbb{R}^n} \phi(|u|)dx \right\}. \]

Choosing a suitable \(\varepsilon \) such that \(C(n, p, a, K)\varepsilon^p < \frac{1}{2} \), (3.4) is obtained.

Next, taking into account [16, Theorem 2.8], the convexity of \(\phi \), (2.2) and (3.4), we have
\[
\int_{\mathbb{R}^n} \phi\left(\left|D^2 u\right|\right)dx \leq C \int_{\mathbb{R}^n} \phi\left(|f - Vu|\right)dx \\
\leq \frac{C}{2} \int_{\mathbb{R}^n} \phi\left(|f|\right)dx + \frac{C}{2} \int_{\mathbb{R}^n} \phi\left(|Vu|\right)dx \\
\leq \frac{KC}{2} \int_{\mathbb{R}^n} \phi\left(|f|\right)dx + \frac{KC}{2} \int_{\mathbb{R}^n} \phi\left(|Vu|\right)dx \\
\leq C \left\{ \int_{\mathbb{R}^n} \phi\left(|f|\right)dx + \int_{\mathbb{R}^n} \phi\left(|u|\right)dx \right\}. \tag{3.5}
\]

Thus, (3.5) implies (1.4). The proof is finished. \(\square \)

4 Proof of Theorem 1.1

By the technique of “S. Agmon’s idea” (see [3], p. 124) and Theorem 1.2, we first prove the following lemma.

Lemma 4.1 Under the same assumptions on \(\phi, a_{ij}, V, q, f \) as in Theorem 1.1, let \(u \in C_0^\infty(B_{R_0/2}) \) satisfy the following equation
\[Lu - \mu u = f, \quad x \in \mathbb{R}^n. \]

Then for any \(\mu \gg 1 \) large enough,
\[
\mu^{\alpha_2} \int_{\mathbb{R}^n} \phi\left(|u|\right)dx + \mu^{\alpha_2/2} \int_{\mathbb{R}^n} \phi\left(|Du|\right)dx + \int_{\mathbb{R}^n} \phi\left(|Vu|\right)dx + \int_{\mathbb{R}^n} \phi\left(|D^2 u|\right)dx \\
\leq C \int_{\mathbb{R}^n} \phi\left(|Lu - \mu u|\right)dx = C \int_{\mathbb{R}^n} \phi\left(|f|\right)dx, \tag{4.1}
\]

where the constant \(C \) is independent of \(\mu \), and \(R_0, \alpha_2 \) are the constants in the proofs of Theorem 1.2 and (2.4), respectively.
Proof Let $\xi \in C_0^\infty(-R_0/2,R_0/2)$ be a cutoff function (not identically zero) and set

$$\tilde{u}(z) = \tilde{u}(x,t) = \xi(t) \cos(\sqrt{\mu}t)u(x)$$

and

$$\tilde{L}\tilde{u}(z) = L\tilde{u} + \tilde{u}_{tt},$$

where $\mu \geq 1$ will be chosen later, then $\tilde{u}(z) \in C_0^\infty(B_{R_0/2} \times (-R_0/2,R_0/2))$. It is easy to verify that the coefficients matrix

$$\begin{pmatrix}
(a_{ij})_{n \times n} & 0 \\
0 & 1
\end{pmatrix}
$$

of the operator \tilde{L} still satisfies the assumptions (H_1) and (H_2). Furthermore, in view of (4.2) and (4.3) we find that

$$\tilde{L}\tilde{u}(z) = \tilde{f}(z),$$

where

$$\tilde{f}(z) = \xi(t) \cos(\sqrt{\mu}t)(Lu - \mu u) + (\xi''(t) \cos(\sqrt{\mu}t) - 2\sqrt{\mu}\xi'(t) \sin(\sqrt{\mu}t))u.$$

For the sake of convenience, we use the following notation

$$D^2_{zz}\tilde{u}(z) = \{D^2_{xx}\tilde{u}(z), \tilde{u}_{xt}(z), \tilde{u}_{tt}(z)\},$$

where

$$D^2_{xx}\tilde{u}(z) = \{\tilde{u}_{x_i x_j}\}_{i,j=1}^n \quad \text{and} \quad \tilde{u}_{xt} = \{\tilde{u}_{x_i t}\}_{i=1}^n.$$

Applying Theorem 1.2 to (4.4),

$$\int_{\mathbb{R}^{n+1}} \phi \left(|D^2_{zz}\tilde{u}| \right) dxdt + \int_{\mathbb{R}^{n+1}} \phi \left(|V\tilde{u}| \right) dxdt \leq C \left\{ \int_{\mathbb{R}^{n+1}} \phi \left(|\tilde{f}| \right) dxdt + \int_{\mathbb{R}^{n+1}} \phi \left(|\tilde{u}| \right) dxdt \right\}. \quad (4.6)$$

If $|\xi(t) \cos(\sqrt{\mu}t)| > 0$, by (2.4) we have

$$\phi \left(|D^2u(x)| \right) = \phi \left(\left| \left(\xi(t) \cos(\sqrt{\mu}t) \right)^{-1} \xi(t) \cos(\sqrt{\mu}t) D^2u(x) \right| \right)$$

$$\leq K |\xi(t) \cos(\sqrt{\mu}t)|^{-\alpha_1} \phi \left(|\xi(t) \cos(\sqrt{\mu}t) D^2u(x)| \right).$$

EJQTDE, 2013 No. 78, p. 10
This and (4.2) yield
\[
\int_{\mathbb{R}^n} \phi (|D^2 u(x)|) \, dx \\
= \left(\int_{\mathbb{R}} K^{-1} |\xi(t) \cos(\sqrt{\mu}t)|^{-1} \int_{\mathbb{R}^{n+1}} K^{-1} |\xi(t) \cos(\sqrt{\mu}t)|^{\alpha_1} \phi (|D^2 u(x)|) \, dx \, dt \right)^{-1} \\
\leq C \int_{\mathbb{R}^{n+1}} K^{-1} |\xi(t) \cos(\sqrt{\mu}t)|^{\alpha_1} \phi (|D^2 u(x)|) \, dx \, dt \\
= C \int_{\mathbb{R}^{n+1}} \{ (x,t) \in \mathbb{R}^{n+1} | |\xi(t) \cos(\sqrt{\mu}t)| > 0 \} K^{-1} |\xi(t) \cos(\sqrt{\mu}t)|^{\alpha_1} \phi (|D^2 u(x)|) \, dx \, dt \\
\leq C \int_{\mathbb{R}^{n+1}} \phi (|D^2_2 \tilde{u}(z)|) \, dx \, dt.
\] (4.7)

Similarly to (4.7) we get
\[
\int_{\mathbb{R}^n} \phi (|Vu|) \, dx \leq C \int_{\mathbb{R}^{n+1}} \phi (|V\tilde{u}(z)|) \, dx \, dt. \tag{4.8}
\]

Using (2.4),
\[
\phi (|Du(x)|) \leq K |\xi(t) \sin(\sqrt{\mu}t)|^{-\alpha_1} \phi (|\xi(t) \sin(\sqrt{\mu}t) Du|).
\]

Thus,
\[
\int_{\mathbb{R}^n} \phi (|Du(x)|) \, dx \leq C \int_{\mathbb{R}^{n+1}} \phi (|\xi(t) \sin(\sqrt{\mu}t) Du|) \, dx \, dt \\
\leq C \sum_{i=1}^{n} \int_{\mathbb{R}^{n+1}} \phi (\mu^{-1/2} |\xi'(t) \cos(\sqrt{\mu}t) u_{x_i} - \tilde{u}_{x_i,t}|) \, dx \, dt \\
\leq C \mu^{-\alpha_2/2} \left(\int_{\mathbb{R}^n} \phi (|Du|) \, dx + \int_{\mathbb{R}^{n+1}} \phi (|\tilde{u}_{xt}|) \, dx \, dt \right).
\]

By choosing \(\mu \gg 1 \) large enough, we obtain the following
\[
\mu^{\alpha_2/2} \int_{\mathbb{R}^n} \phi (|Du(x)|) \, dx \leq C \int_{\mathbb{R}^{n+1}} \phi (|\tilde{u}_{xt}(z)|) \, dx \, dt \\
\leq C \int_{\mathbb{R}^{n+1}} \phi (|D^2_2 \tilde{u}(z)|) \, dx \, dt. \tag{4.9}
\]

Since
\[
-\mu \xi(t) \cos(\sqrt{\mu}t) u(x) = \tilde{u}_{tt}(z) - (\xi''(t) \cos(\sqrt{\mu}t) - 2\sqrt{\mu} \xi'(t) \sin(\sqrt{\mu}t)) u(x),
\]

EJQTDE, 2013 No. 78, p. 11
we get
\[\mu^{α2} \int_{\mathbb{R}^n} \phi(|u(x)|)dx \leq C \int_{\mathbb{R}^{n+1}} \phi(|\tilde{u}_t(z)|)dxdt \]
\[\leq C \int_{\mathbb{R}^{n+1}} \phi\left(|D_{zz}^2 \tilde{u}(z)|\right)dxdt. \quad (4.10) \]
Combining (4.5)–(4.10) and noting that
\[-\sqrt{\mu} \xi'(t) \sin(\sqrt{\mu}t) u(x) = (\xi'(t) \cos(\sqrt{\mu}t))_t - \xi''(t) \cos(\sqrt{\mu}t) u(x), \]
we immediately find that
\[\mu^{α2} \int_{\mathbb{R}^n} \phi(|u|)dx + \mu^{α2/2} \int_{\mathbb{R}^n} \phi(|Du|)dx + \int_{\mathbb{R}^n} \phi(|Vu|)dx + \int_{\mathbb{R}^n} \phi\left(|D^2u|\right)dx \]
\[\leq C \left\{ \int_{\mathbb{R}^{n+1}} \phi\left(|D_{zz}^2 \tilde{u}|\right)dxdt + \int_{\mathbb{R}^{n+1}} \phi\left(|V\tilde{u}|\right)dxdt \right\} \]
\[\leq C \left\{ \int_{\mathbb{R}^{n+1}} \phi\left(|\tilde{f}|\right)dxdt + \int_{\mathbb{R}^{n+1}} \phi(|\tilde{u}|)dxdt \right\} \]
\[\leq C \left(\int_{\mathbb{R}^n} \phi(|Lu - \mu u|)dx + \int_{\mathbb{R}^n} \phi(|u|)dx \right). \]
The desired estimate (4.1) follows by taking \(\mu \gg 1 \) large enough. The lemma is proved. □

Furthermore, we shall show that the assumption \(C_0^\infty(B_{R_0/2}) \) can be removed.
A covering lemma in a locally invariant quasimetric space was proved by Bramanti et al. in [5]. Since the Euclidean space \(\mathbb{R}^n \) is a special locally invariant quasimetric space, the covering lemma also holds in \(\mathbb{R}^n \). For the convenience to readers, we describe it as follows.

Lemma 4.2 For given \(R_0 \) and any \(\kappa > 1 \), there exist \(R_1 \in (0, R_0/2) \), a positive integer \(M \) and a sequence of points \(\{x_i\}_{i=1}^\infty \subset \mathbb{R}^n \) such that
\[\mathbb{R}^n = \bigcup_{i=1}^\infty B_{R_1}(x_i); \]
\[\sum_{i=1}^\infty \chi_{B_{\kappa R_1}(x_i)}(y) \leq M \quad \text{for any} \quad y \in \mathbb{R}^n, \]
where \(\chi_{B_{\kappa R_1}(x_i)}(y) \) is the characteristic function of \(B_{\kappa R_1}(x_i) \), that is, the function equal to 1 in \(B_{\kappa R_1}(x_i) \) and 0 in \(\mathbb{R}^n \setminus B_{\kappa R_1}(x_i) \).
Proof of Theorem 1.1. Let $\rho(x)$ be a cutoff function on $B_{R_0/2}$ relative to B_{R_1}, namely, $\rho(x) \in C_0^\infty(B_{R_0/2}), 0 \leq \rho(x) \leq 1$ and $\rho(x) \equiv 1$ on B_{R_1}, where R_1 is as in Lemma 4.2. For any fixed $x_0 \in \mathbb{R}^n$, we set

$$u^0(x) = u(x)\rho(x - x_0) =: u(x)\rho^0(x) \quad (4.11)$$

and observe that

$$Lu^0(x) - \mu u^0(x) = f\rho^0 - 2a_{ij}u_{x_i}\rho^0_{x_j} - a_{ij}u\rho^0_{x_i}x_j =: f^0.$$

By Definition 2.9, there exists a sequence $\{u^k\}$ of functions in $C_0^\infty(\mathbb{R}^n)$ such that

$$\|u_k - u\|_{W^2L^\phi(\mathbb{R}^n)} + \|Vu_k - Vu\|_{L^\phi(\mathbb{R}^n)} \to 0, \text{ as } k \to \infty. \quad (4.12)$$

It follows from Remark 2.7 that

$$\int_{\mathbb{R}^n} \phi(|u_k - u|)dx + \int_{\mathbb{R}^n} \phi(|D(u_k - u)|)dx + \int_{\mathbb{R}^n} \phi(|D^2(u_k - u)|)dx$$

$$+ \int_{\mathbb{R}^n} \phi(V|u_k - u|)dx \to 0, \text{ as } k \to \infty. \quad (4.13)$$

Let $u^0_k = u_k\rho^0$. Then using the properties of ρ, the monotonicity, convexity of ϕ, (4.13), (2.4) and Remark 2.7, we obtain

$$\|u^0_k - u^0\|_{W^2L^\phi(\mathbb{R}^n)} + \|Vu^0_k - Vu^0\|_{L^\phi(\mathbb{R}^n)} \to 0, \text{ as } k \to \infty. \quad (4.14)$$

Set

$$f_k = Lu_k - \mu u_k \text{ and } f^0_k = Lu^0_k - \mu u^0_k.$$

It follows by (H_1) and (4.12) that

$$\|f^0_k - f^0\|_{L^\phi(\mathbb{R}^n)}$$

$$\leq \|Lu^0_k - Lu^0\|_{L^\phi(\mathbb{R}^n)} + \mu\|u^0_k - u^0\|_{L^\phi(\mathbb{R}^n)} \to 0, \text{ as } k \to \infty. \quad (4.15)$$

Hence, by (4.14), (4.15), Lemma 4.1 and Remark 2.7 we have

$$\mu^{\alpha_2}\int_{\mathbb{R}^n} \phi(|u^0|)dx + \mu^{\alpha_2/2}\int_{\mathbb{R}^n} \phi(|Du^0|)dx + \int_{\mathbb{R}^n} \phi(|Vu^0|)dx$$

$$+ \int_{\mathbb{R}^n} \phi(|D^2u^0|)dx$$

$$\leq C\int_{\mathbb{R}^n} \phi(|f^0|)dx$$

$$\leq C\left\{\int_{B_{R_0/2}(x_0)} \phi(|f|)dx + \int_{B_{R_0/2}(x_0)} \phi(|u|)dx + \int_{B_{R_0/2}(x_0)} \phi(|Du|)dx\right\}. \quad (4.16)$$

EJQTDE, 2013 No. 78, p. 13
Note that (4.11) and (2.4) yield
\[\int_{\mathbb{R}^n} \phi(|\rho^0 Du|) \, dx \leq C \left\{ \int_{\mathbb{R}^n} \phi(|Du^0|) \, dx + \int_{\mathbb{R}^n} \phi(|uD\rho^0|) \, dx \right\} \] (4.17)
and
\[\int_{\mathbb{R}^n} \phi(|\rho^0 D^2 u|) \, dx \leq C \left\{ \int_{\mathbb{R}^n} \phi(|D^2 u^0|) \, dx + \int_{\mathbb{R}^n} \phi(|uD^2 \rho^0|) \, dx \right. \\
+ \left. \int_{\mathbb{R}^n} \phi(|D \cdot D\rho^0|) \, dx \right\}. \] (4.18)

Then combining (4.16), (4.17) and (4.18) implies that
\[\mu^{\alpha_2} \int_{B_{R_0/2}(x_0)} \phi(|\rho^0 u|) \, dx + \mu^{\alpha_2/2} \int_{B_{R_0/2}(x_0)} \phi(|\rho^0 Du|) \, dx \\
+ \int_{B_{R_0/2}(x_0)} \phi(|\rho^0 Vu|) \, dx + \int_{B_{R_0/2}(x_0)} \phi(|\rho^0 D^2 u|) \, dx \leq C \left\{ \int_{B_{R_0/2}(x_0)} \phi(|f|) \, dx + \mu^{\alpha_2/2} \int_{B_{R_0/2}(x_0)} \phi(|u|) \, dx + \int_{B_{R_0/2}(x_0)} \phi(|Du|) \, dx \right\}. \]

Therefore, by the above inequality and Lemma 4.2 we deduce that
\[\mu^{\alpha_2} \int_{\mathbb{R}^n} \phi(|u|) \, dx + \mu^{\alpha_2/2} \int_{\mathbb{R}^n} \phi(|Du|) \, dx + \int_{\mathbb{R}^n} \phi(|Vu|) \, dx + \int_{\mathbb{R}^n} \phi(|D^2 u|) \, dx \leq C \left\{ \int_{B_{R_1}(x_i)} \phi(|\rho^0 u|) \, dx + \mu^{\alpha_2/2} \int_{B_{R_1}(x_i)} \phi(|\rho^0 Du|) \, dx \\
+ \int_{B_{R_1}(x_i)} \phi(|\rho^0 Vu|) \, dx + \int_{B_{R_1}(x_i)} \phi(|\rho^0 D^2 u|) \, dx \right\} \\
\leq C \sum_{i=1}^{\infty} \left\{ \int_{B_{R_0/2}(x_i)} \phi(|f|) \, dx + \mu^{\alpha_2/2} \int_{B_{R_0/2}(x_i)} \phi(|u|) \, dx \\
+ \int_{B_{R_0/2}(x_i)} \phi(|Du|) \, dx \right\} \leq C \left\{ \int_{\mathbb{R}^n} \phi(|f|) \, dx + \mu^{\alpha_2/2} \int_{\mathbb{R}^n} \phi(|u|) \, dx + \int_{\mathbb{R}^n} \phi(|Du|) \, dx \right\}. \]

(1.3) is obtained by taking \(\mu \gg 1 \) large enough. The theorem is proved. \(\square \)

Acknowledgments. The author thanks the anonymous referee for offering valuable suggestions which have improved the presentation.
References

(Received June 27, 2013)