The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Alon, Noga; Krivelevich, Michael; Sudakov, Benny. Finding a large hidden clique in a random graph. Proceedings of the Eighth International Conference "Random Structures and Algorithms'' (Poznan, 1997). Random Structures Algorithms 13 (1998), no. 3-4, 457--466. MR1662795 (99k:05144)

  2. Alon, Noga; Spencer, Joel H. The probabilistic method. With an appendix by Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1992. xvi+254 pp. ISBN: 0-471-53588-5 MR1140703 (93h:60002)

  3. Ané, Cécile; Blachère, Sébastien; Chafaï, Djalil; Fougères, Pierre; Gentil, Ivan; Malrieu, Florent; Roberto, Cyril; Scheffer, Grégory. Sur les inégalités de Sobolev logarithmiques. (French) [Logarithmic Sobolev inequalities] With a preface by Dominique Bakry and Michel Ledoux. Panoramas et Synthèses [Panoramas and Syntheses], 10. Société Mathématique de France, Paris, 2000. xvi+217 pp. ISBN: 2-85629-105-8 MR1845806 (2002g:46132)

  4. Bentkus, V. On the dependence of the Berry-Esseen bound on dimension. J. Statist. Plann. Inference 113 (2003), no. 2, 385--402. MR1965117 (2004b:60061)

  5. Bollobás, Béla. Random graphs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. xvi+447 pp. ISBN: 0-12-111755-3; 0-12-111756-1 MR0809996 (87f:05152)

  6. Brieden, Andreas; Gritzmann, Peter; Kannan, Ravindran; Klee, Victor; Lovász, László; Simonovits, Miklós. Deterministic and randomized polynomial-time approximation of radii. Mathematika 48 (2001), no. 1-2, 63--105 (2003). MR1996363 (2004f:52012)

  7. Chernoff, Herman. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23, (1952). 493--507. MR0057518 (15,241c)

  8. Danzer, Ludwig; Grünbaum, Branko; Klee, Victor. Helly's theorem and its relatives. 1963 Proc. Sympos. Pure Math., Vol. VII pp. 101--180 Amer. Math. Soc., Providence, R.I. MR0157289 (28 #524)

  9. Dudley, R. M. Central limit theorems for empirical measures. Ann. Probab. 6 no. 6, 899--929 (1979). MR0512411 (81k:60029a)

  10. Erdős, P.; Rényi, A. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 1960 17--61. MR0125031 (23 #A2338)

  11. Janson, Svante; Łuczak, Tomasz; Rucinski, Andrzej. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. xii+333 pp. ISBN: 0-471-17541-2 MR1782847 (2001k:05180)

  12. Jung, H. Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 1901 241--257.

  13. Massart, Pascal. Concentration inequalities and model selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1896. Springer, Berlin, 2007. xiv+337 pp. ISBN: 978-3-540-48497-4; 3-540-48497-3 MR2319879 (2010a:62008)

  14. Nadakudit, R.R.; Silverstein, J.W. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples Technical Report. 2009.

  15. Palmer, Edgar M. Graphical evolution. An introduction to the theory of random graphs. Wiley-Interscience Series in Discrete Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1985. xvii+177 pp. ISBN: 0-471-81577-2 MR0795795 (87a:05121)

  16. Penrose, Mathew. Random geometric graphs. Oxford Studies in Probability, 5. Oxford University Press, Oxford, 2003. xiv+330 pp. ISBN: 0-19-850626-0 MR1986198 (2005j:60003)

  17. Raič, M.. Normalna aproksimacija po Steinovi metodi. PhD thesis, Univerza v Ljubljani, 2009.

  18. Vapnik, V. N.; Chervonenkis, A. Ya. \cyr Teoriya raspoznavaniya obrazov. Statisticheskie problemy obucheniya. (Russian) [Theory of pattern recognition. Statistical problems of learning] Izdat. ``Nauka'' WHERE article_id=Moscow, 1974. 415 pp. MR0474638 (57 #14274)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.