Download this PDF file Fullscreen Fullscreen Off

#### References

- Alili, L. and Chaumont, L. (2001) A new fluctuation identity for Levy
processes and some applications. Bernoulli 7, 557--569.
Math. Review 2002f:60090
**MR1836746** - Alili, L. and Kyprianou, A.E. (2005)
Some remarks on first passage of Levy processes, the American put and pasting principles,
Ann. Appl. Probab., 15, 2062--2080.
Math. Review 2006b:60078
**MR2152253** - Andrew, P. (2006)
A proof from "first principles" of Kesten's result for the probabilities with which a subordinator hits points,
Electron. Comm. Probab. 11, 58--63.
Math. Review 2007h:60031
**MR2219346** - Bertoin, J. (1996) Levy Processes. Cambridge Univ. Press.
Math. Review 98e:60117
**MR1406564** - Chaumont, L. and Doney, R.A. (2010)
Invariance principles for local times at the supremum of random walks and Levy processes.
Ann. Probab. 38, 1368--1389
Math. Review 2011j:60105
**MR2663630** - Doney, R.A. (2005) Fluctuation Theory for Levy Processes. Lecture Notes in Mathematics 1897, Ecole d'Ete de Probabilites de Saint-Flour XXXV, J. Picard, Ed. Math. Review number not available.
- Doney, R.A. and Kyprianou, A. (2006) Overshoots and undershoots of Levy processes.
Ann. Appl. Probab. 16, 91--106.
Math. Review 2007b:60117
**MR2209337** - Griffin, P.S. and Maller, R.A. (2011a) Path decomposition of ruinous behaviour for a general L evy insurance risk process. Ann. Appl. Probab., to appear. . Math. Review number not available.
- Griffin, P.S. and Maller, R.A. (2011b). Stability of the exit time for Levy processes. Adv. Appl. Probab., 43, 712--734. Math. Review number not available.
- Kesten, H. (1969) Hitting probabilities of single points for processes with stationary independent increments. Memoirs of the American Math. Soc., 93. Math. Review number not available.
- Kyprianou, A. (2006).
Introductory Lectures on Fluctuations of Levy Processes with Applications.
Springer, Berlin Heidelberg New York.
Math. Review 2008a:60003
**MR2250061** - Percheskii, E.A. and Rogozin, B.A. (1969) On joint distributions of random variables associated with fluctuations of a process with independent increments, Theory Probab. Appl., 14, 410--423. Math. Review number not available.
- Sato, K. (1999). Levy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. Math. Review number not available.
- Savov, M. and Winkel, M. (2010)
Right inverses of Levy processes: the excursion measure in the general case,
Electron. Comm. Probab. 15, 572–584.
Math. Review 2746335
**MR2746335** - Vigon, V. (2002). Votre Levy rampe-t-il? J. London Math. Soc., 65, 243--256.
Math. Review 2002i:60101
**MR1875147** - Winkel, M. (2005) Electronic foreign exchange markets and passage events of independent subordinators.
J. Appl. Probab. 42, 138--152
Math. Review 2006b:60102
**MR2144899**

This work is licensed under a Creative Commons Attribution 3.0 License.