The Fractional Poisson Process and the Inverse Stable Subordinator

Mark M Meerschaert (Michigan State University)
Erkan Nane (Auburn University)
P. Vellaisamy (Indian Institute of Technology Bombay)


The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1600-1620

Publication Date: August 28, 2011

DOI: 10.1214/EJP.v16-920


  1. Allouba, Hassan; Zheng, Weian. Brownian-time processes: the PDE connection and the half-derivative generator. Ann. Probab. 29 (2001), no. 4, 1780--1795. MR1880242 (2002j:60118)
  2. Applebaum, David. Lévy processes and stochastic calculus.Second edition.Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. xxx+460 pp. ISBN: 978-0-521-73865-1 MR2512800 (2010m:60002)
  3. Baeumer, Boris; Meerschaert, Mark M. Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481--500. MR1874479 (2003d:26006)
  4. Baeumer, Boris; Meerschaert, Mark M.; Nane, Erkan. Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009), no. 7, 3915--3930. MR2491905 (2010f:60233)
  5. Baeumer, Boris; Meerschaert, Mark M. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (2010), no. 10, 2438--2448. MR2577834 (2010m:60285)
  6. Beghin, L.; Orsingher, E. Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14 (2009), no. 61, 1790--1827. MR2535014 (2010m:60168)
  7. Beghin, L.; Orsingher, E. Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15 (2010), no. 22, 684--709. MR2650778 (2011f:60168)
  8. Billingsley, Patrick. Convergence of probability measures.John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
  9. Bingham, N. H. Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 1971 1--22. MR0281255 (43 #6974)
  10. Bingham, N. H. Maxima of sums of random variables and suprema of stable processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 273--296. MR0415780 (54 #3859)
  11. Cahoy, Dexter Odchigue. Fractional Poisson process in terms of alpha-stable densities.Thesis (Ph.D.)–Case Western Reserve University.ProQuest LLC, Ann Arbor, MI, 2007. 106 pp. ISBN: 978-1109-98348-7 MR2710115
  12. Cahoy, Dexter O.; Uchaikin, Vladimir V.; Woyczynski, Wojbor A. Parameter estimation for fractional Poisson processes. J. Statist. Plann. Inference 140 (2010), no. 11, 3106--3120. MR2659841 (2011h:62059)
  13. M. Caputo. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), 529--539. Math. Review number not available.
  14. A. Cartea, D. Del-Castillo-Negrete. Fluid limit of the continuous-time random walk with general LÈvy jump distribution functions. Phys. Rev. E, 76 (2007), 041105. Math. Review number not available.
  15. A. Chakrabarty, M.M. Meerschaert. Tempered stable laws as random walk limits. Statist. Probab. Lett. 81(8) (2011), 989--997. Math. Review number not available.
  16. A.V. Chechkin, R. Gorenflo, I.M. Sokolov. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66 (2002), 046129--046135. Math. Review number not available.
  17. A.V. Chechkin, J. Klafter, I.M. Sokolov. Fractional Fokker-Plank equation for ultraslow kinetics. Europhys. Lett. 63 (2003), 326--332. Math. Review number not available.
  18. Cont, Rama; Tankov, Peter. Financial modelling with jump processes.Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. xvi+535 pp. ISBN: 1-5848-8413-4 MR2042661 (2004m:91004)
  19. Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403 (42 #5292)
  20. Gorenflo, R.; Mainardi, F. Fractional calculus: integral and differential equations of fractional order. Fractals and fractional calculus in continuum mechanics (Udine, 1996), 223--276, CISM Courses and Lectures, 378, Springer, Vienna, 1997. MR1611585 (99g:26015)
  21. R. Hilfer, L. Anton. Fractional master equations and fractal time random walks. Phys. Rev. E 51 (1995), R848-ñR851.
  22. Hille, Einar; Phillips, Ralph S. Functional analysis and semi-groups.rev. ed.American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence, R. I., 1957. xii+808 pp. MR0089373 (19,664d)
  23. Huillet, Thierry. On Linnik's continuous-time random walks. J. Phys. A 33 (2000), no. 14, 2631--2652. MR1761635 (2002a:82056)
  24. Jumarie, Guy. Fractional master equation: non-standard analysis and Liouville-Riemann derivative. Chaos Solitons Fractals 12 (2001), no. 13, 2577--2587. MR1851079 (2003i:82069)
  25. V. Keyantuo,C. Lizama. On a connection between powers of operators and fractional Cauchy problems. (2009). Preprint available at Keyantuo-Lizama(AMPA)(2009).PDF.
  26. Kochubei, Anatoly N. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), no. 1, 252--281. MR2376152 (2009i:35177)
  27. Kozubowski, Tomasz J. The inner characterization of geometric stable laws. Statist. Decisions 12 (1994), no. 3, 307--321. MR1309670 (95j:60030)
  28. Lagerås, Andreas Nordvall. A renewal-process-type expression for the moments of inverse subordinators. J. Appl. Probab. 42 (2005), no. 4, 1134--1144. MR2203828 (2007c:60089)
  29. Laskin, Nick. Fractional Poisson process.Chaotic transport and complexity in classical and quantum dynamics. Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 201--213. MR2007003 (2004j:60101)
  30. Metzler, Ralf; Klafter, Joseph. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), no. 1, 77 pp. MR1809268 (2001k:82082)
  31. Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996), no. 6, 23--28. MR1419811 (97h:35132)
  32. Mainardi, Francesco; Gorenflo, Rudolf; Scalas, Enrico. A fractional generalization of the Poisson processes. Vietnam J. Math. 32 (2004), Special Issue, 53--64. MR2120631
  33. Mainardi, Francesco; Gorenflo, Rudolf; Vivoli, Alessandro. Beyond the Poisson renewal process: a tutorial survey. J. Comput. Appl. Math. 205 (2007), no. 2, 725--735. MR2329648
  34. M.M. Meerschaert, H.P. Scheffler. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York, 2001.
  35. Meerschaert, Mark M.; Scheffler, Hans-Peter. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41 (2004), no. 3, 623--638. MR2074812 (2005f:60105)
  36. Meerschaert, Mark M.; Scheffler, Hans-Peter. Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006), no. 9, 1215--1235. MR2251542 (2008g:60136)
  37. Meerschaert, Mark M.; Scheffler, Hans-Peter. Triangular array limits for continuous time random walks. Stochastic Process. Appl. 118 (2008), no. 9, 1606--1633. MR2442372 (2010b:60135)
  38. M.M. Meerschaert, Y. Zhang, B. Baeumer. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008), L17403.
  39. Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P. Fractional Cauchy problems on bounded domains. Ann. Probab. 37 (2009), no. 3, 979--1007. MR2537547 (2010h:60121)
  40. Nane, Erkan. Stochastic solutions of a class of higher order Cauchy problems in $\Bbb R\sp d$. Stoch. Dyn. 10 (2010), no. 3, 341--366. MR2671380 (2011e:60153)
  41. Pillai, R. N. On Mittag-Leffler functions and related distributions. Ann. Inst. Statist. Math. 42 (1990), no. 1, 157--161. MR1054728 (91e:60040)
  42. Repin, O. N.; Saichev, A. I. Fractional Poisson law. Radiophys. and Quantum Electronics 43 (2000), no. 9, 738--741 (2001). MR1910034
  43. Rosiński, Jan. Tempering stable processes. Stochastic Process. Appl. 117 (2007), no. 6, 677--707. MR2327834 (2008g:60146)
  44. Scher, H.; Lax, M. Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B (3) 7 (1973), no. 10, 4491--4502. MR0391854 (52 #12673)
  45. Seneta, Eugene. Regularly varying functions.Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976. v+112 pp. MR0453936 (56 #12189)
  46. Uchaikin, V. V.; Cahoy, D. O.; Sibatov, R. T. Fractional processes: from Poisson to branching one. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 9, 2717--2725. MR2479327 (2009m:60097)
  47. Whitt, Ward. Stochastic-process limits.An introduction to stochastic-process limits and their application to queues.Springer Series in Operations Research. Springer-Verlag, New York, 2002. xxiv+602 pp. ISBN: 0-387-95358-2 MR1876437 (2003f:60005)
  48. Zaslavsky, G. M. Fractional kinetic equation for Hamiltonian chaos.Chaotic advection, tracer dynamics and turbulent dispersion (Gavi, 1993). Phys. D 76 (1994), no. 1-3, 110--122. MR1295881 (95h:58120)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.