The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Crippa, Gianluca; De Lellis, Camillo. Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616 (2008), 15--46. MR2369485 (2008m:34085)
  2. Elworthy, K. D.; Li, X.-M. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994), no. 1, 252--286. MR1297021 (95j:60087)
  3. Fang S. Z, Imkeller. P and Zhang T.S. Global flows for stochastic differential equations without global Lipschitz conditions. Ann. Probab. 35 (2007), no. 1, 180--205. MR2303947
  4. Fedrizzi. E, Flandoli. F. Pathwise uniqueness and continuous dependence for SDEs with nonregular drift.
  5. Flandoli. F, Gubinelli. M and Priola. E. Flow of diffeomorphisms for SDEs with unbounded Holder continuous drift. Bull. Sci. Math. 134 (2010), no. 4, 405--422. MR2651899
  6. Gyöngy, István; Martínez, Teresa. On stochastic differential equations with locally unbounded drift. Czechoslovak Math. J. 51(126) (2001), no. 4, 763--783. MR1864041 (2002h:60119)
  7. Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes.Second edition.North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3 MR1011252 (90m:60069)
  8. Krylov, N. V. Controlled diffusion processes.Translated from the Russian by A. B. Aries.Applications of Mathematics, 14. Springer-Verlag, New York-Berlin, 1980. xii+308 pp. ISBN: 0-387-90461-1 MR0601776 (82a:60062)
  9. Krylov, N. V. Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale.(Russian) Mat. Sb. (N.S.) 130(172) (1986), no. 2, 207--221, 284. MR0854972 (87m:35118)
  10. Krylov, N. V.; Röckner, M. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131 (2005), no. 2, 154--196. MR2117951 (2005k:60209)
  11. Kunita, Hiroshi. Stochastic flows and stochastic differential equations.Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361 (91m:60107)
  12. Portenko, N. I. Generalized diffusion processes.Translated from the Russian by H. H. McFaden.Translations of Mathematical Monographs, 83. American Mathematical Society, Providence, RI, 1990. x+180 pp. ISBN: 0-8218-4538-1 MR1104660 (92b:60074)
  13. Protter, Philip E. Stochastic integration and differential equations.Second edition. Version 2.1.Corrected third printing.Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. xiv+419 pp. ISBN: 3-540-00313-4 MR2273672 (2008e:60001)
  14. Ren, Jie; Zhang, Xicheng. Limit theorems for stochastic differential equations with discontinuous coefficients. SIAM J. Math. Anal. 43 (2011), no. 1, 302--321. MR2765692
  15. Veretennikov, A. Ju. Strong solutions of stochastic differential equations.(Russian) Teor. Veroyatnost. i Primenen. 24 (1979), no. 2, 348--360. MR0532447 (81b:60058)
  16. Zhang, Xicheng. Strong solutions of SDES with singular drift and Sobolev diffusion coefficients. Stochastic Process. Appl. 115 (2005), no. 11, 1805--1818. MR2172887 (2007f:60051)
  17. Zhang. X. Stochastic flows and Bismut formulas for stochastic Hamiltonian systems. Stochastic Process. Appl. 120 (2010), no. 10, 1929--1949. MR2673982
  18. Zvonkin, A. K. A transformation of the phase space of a diffusion process that will remove the drift.(Russian) Mat. Sb. (N.S.) 93(135) (1974), 129--149, 152. MR0336813 (49 #1586)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.