Stochastic Order Methods Applied to Stochastic Travelling Waves

Roger Tribe (University of Warwick)
Nicholas Woodward (University of Warwick)


This paper considers some one dimensional reaction diffusion equations driven by a one dimensional multiplicative white noise. The existence of a stochastic travelling wave solution is established, as well as a sufficient condition to be in its domain of attraction. The arguments use stochastic ordering techniques.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 436-469

Publication Date: March 9, 2011

DOI: 10.1214/EJP.v16-868


  1. Bramson, Maury. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983), no. 285, iv+190 pp. MR0705746 (84m:60098)
  2. Fife, Paul C.; McLeod, J. B. A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 281--314. MR0607901 (83b:35085)
  3. Kunita, Hiroshi. Stochastic flows and stochastic differential equations.Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361 (91m:60107)
  4. Lindvall, Torgny. On Strassen's theorem on stochastic domination. Electron. Comm. Probab. 4 (1999), 51--59 (electronic). MR1711599 (2000k:60006)
  5. McKean, H. P. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28 (1975), no. 3, 323--331. MR0400428
  6. Mueller, Carl. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991), no. 4, 225--245. MR1149348 (93e:60122)
  7. Murray, J. D. Mathematical biology.Second edition.Biomathematics, 19. Springer-Verlag, Berlin, 1993. xiv+767 pp. ISBN: 3-540-57204-X MR1239892 (94j:92002)
  8. Nakayama, Toshiyuki. Support theorem for mild solutions of SDE's in Hilbert spaces. J. Math. Sci. Univ. Tokyo 11 (2004), no. 3, 245--311. MR2097527 (2005k:60069)
  9. Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1991. x+533 pp. ISBN: 3-540-52167-4 MR1083357 (92d:60053)
  10. Sharpe, Michael. General theory of Markov processes.Pure and Applied Mathematics, 133. Academic Press, Inc., Boston, MA, 1988. xii+419 pp. ISBN: 0-12-639060-6 MR0958914 (89m:60169)
  11. Shiga, Tokuzo. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994), no. 2, 415--437. MR1271224 (95h:60099)
  12. Strassen, V. The existence of probability measures with given marginals. Ann. Math. Statist. 36 1965 423--439. MR0177430 (31 #1693)
  13. Tessitore, Gianmario; Zabczyk, Jerzy. Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equ. 6 (2006), no. 4, 621--655. MR2267702 (2008d:60088)
  14. N. Woodward, University of Warwick Ph.D. Thesis, Stochastic Travelling waves, 2010.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.