Law of Large Numbers for a Class of Random Walks in Dynamic Random Environments

Luca LA Avena (Unversity of Z├╝rich)
Frank den Hollander (Leiden University)
Frank Redig (Radboud University Nijmegen)

Abstract


In this paper we consider a class of one-dimensional interacting particle systems in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied/vacant sites has a local drift to the right/left. We adapt a regeneration-time argument originally developed by Comets and Zeitouni for static random environments to prove that, under a space-time mixing property for the dynamic random environment called cone-mixing, the random walk has an a.s. constant global speed. In addition, we show that if the dynamic random environment is exponentially mixing in space-time and the local drifts are small, then the global speed can be written as a power series in the size of the local drifts. From the first term in this series the sign of the global speed can be read off. The results can be easily extended to higher dimensions.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 587-617

Publication Date: March 29, 2011

DOI: 10.1214/EJP.v16-866

References

  1. Avena, Luca. Random Walks in Dynamic Random Environments, PhD thesis, Leiden, 2010. Available on the online catalogue of the Leiden University Library: www.catalogus.leidenuniv.nl Math. Review number not available
  2. Avena, L.; den Hollander, F.; Redig, F. Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion. Markov Process. Related Fields 16 (2010), no. 1, 139--168. Math. Review 2664339
  3. Bandyopadhyay, Antar; Zeitouni, Ofer. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205--224. Math. Review 2007e:60097
  4. Berbee, Henry. Convergence rates in the strong law for bounded mixing sequences. Probab. Theory Related Fields 74 (1987), no. 2, 255--270. Math. Review 88d:60093
  5. Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Random walk in a fluctuating random environment with Markov evolution. On Dobrushin's way. From probability theory to statistical physics, 13--35, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000. Math. Review 2001k:60148
  6. Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009), no. 10, 3285--3299. Math. Review 2568274
  7. Bricmont, Jean; Kupiainen, Antti. Random walks in space time mixing environments. J. Stat. Phys. 134 (2009), no. 5-6, 979--1004. Math. Review 2010d:60222
  8. Comets, Francis; Zeitouni, Ofer. A law of large numbers for random walks in random mixing environments. Ann. Probab. 32 (2004), no. 1B, 880--914. Math. Review 2005i:60202
  9. den Hollander, F.; Kesten, H.; Sidoravicius, V. Random walk in a high density dynamic random environment. Work in progress.
  10. Dolgopyat, Dmitry; Keller, Gerhard; Liverani, Carlangelo. Random walk in Markovian environment. Ann. Probab. 36 (2008), no. 5, 1676--1710. Math. Review 2009f:60124
  11. Georgii, Hans-Otto. Gibbs measures and phase transitions. de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1988. xiv+525 pp. ISBN: 0-89925-462-4 Math. Review 89k:82010
  12. Giacomin, Giambattista; Olla, Stefano; Spohn, Herbert. Equilibrium fluctuations for $nablaphi$ interface model. Ann. Probab. 29 (2001), no. 3, 1138--1172. Math. Review 2003c:60161
  13. Holley, Richard. Rapid convergence to equilibrium in one-dimensional stochastic Ising models. Ann. Probab. 13 (1985), no. 1, 72--89. Math. Review 86c:60139
  14. M. Joseph and F. Rassoul-Agha, Almost sure invariance principle for continuous-space random walk in dynamic random environment, ALEA Lat. Amer. J. Probab. Math. Stat. 6 (2010) 1--15. Math. Review number not available
  15. Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 Math. Review 86e:60089
  16. Maes, Christian; Shlosman, Senya B. When is an interacting particle system ergodic? Comm. Math. Phys. 151 (1993), no. 3, 447--466. Math. Review 94e:82073
  17. Martinelli, Fabio. Lectures on Glauber dynamics for discrete spin models. Lectures on probability theory and statistics (Saint-Flour, 1997), 93--191, Lecture Notes in Math., 1717, Springer, Berlin, 1999. Math. Review 2002a:60163
  18. Rassoul-Agha, Firas. The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003), no. 3, 1441--1463. Math. Review 2004h:60151
  19. Rassoul-Agha, Firas; Sepp?l?inen, Timo. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005), no. 3, 299--314. Math. Review 2007f:60030
  20. Steif, Jeffrey E. $overline d$-convergence to equilibrium and space-time Bernoullicity for spin systems in the $MErgodic Theory Dynam. Systems 11 (1991), no. 3, 547--575. Math. Review 93b:60232
  21. Bolthausen, Erwin; Sznitman, Alain-Sol. Ten lectures on random media. DMV Seminar, 32. Birkh?user Verlag, Basel, 2002. vi+116 pp. ISBN: 3-7643-6703-2 Math. Review 2003f:60183
  22. Sznitman, Alain-Sol; Zerner, Martin. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999), no. 4, 1851--1869. Math. Review 2001f:60116
  23. Williams, David. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. xvi+251 pp. ISBN: 0-521-40455-X; 0-521-40605-6 Math. Review 93d:60002
  24. Zeitouni, Ofer. Random walks in random environment. Lectures on probability theory and statistics, 189--312, Lecture Notes in Math., 1837, Springer, Berlin, 2004. Math. Review 2006a:60201
  25. Zeitouni, Ofer. Random walks in random environments. J. Phys. A 39 (2006), no. 40, R433--R464. Math. Review 2007h:60097


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.