Bulk Scaling Limit of the Laguerre Ensemble

Stephanie Jacquot (University of Cambridge)
Benedek Valko (University of Wisconsin Madison)


We consider the $\beta$-Laguerre ensemble, a family of distributions generalizing the joint eigenvalue distribution of the Wishart random matrices. We show that the bulk scaling limit of these ensembles exists for all $\beta>0$ for a general family of parameters and it is the same as the bulk scaling limit of the corresponding $\beta$-Hermite ensemble.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 314-346

Publication Date: February 6, 2011

DOI: 10.1214/EJP.v16-854


  1. Dumitriu, Ioana; Edelman, Alan. Matrix models for beta ensembles. J. Math. Phys. 43 (2002), no. 11, 5830--5847. MR1936554(2004g:82044)

  2. Dumitriu, Ioana and Forrester, Peter. Tridiagonal realization of the anti-symmetric Gaussian beta-ensemble J. Math. Phys., 51, 093302, 2010

  3. Erdös, László; Schlein, Benjamin; Yau, Horng-Tzer, Yin, Jun. The local relaxation flow approach to universality of the local statistics for random matrices, 2009. Preprint, arXiv:0911.3687.

  4. Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. John Wiley & Sons, Inc., New York, 1986. MR0838085(88a:60130)

  5. Forrester, Peter J. Log-gases and random matrices. Princeton University Press, Princeton, NJ, 2010. MR2641363

  6. Kritchevski, Eugene; Valkó, Benedek; Virág, Bálint. The scaling limit of the critical one-dimensional random Schrödinger operator, 2010. Preprint.

  7. Marčenko, V. A.; Pastur, L. A. Distribution of eigenvalues in certain sets of random matrices. (Russian) Mat. Sb. (N.S.) 72 (114) 1967 507--536. MR0208649(34 #8458)

  8. Mehta, Madan Lal. Random matrices. Elsevier/Academic Press, Amsterdam, 2004. MR2129906(2006b:82001)

  9. Ramírez, José A.; Rider, Brian.; Virág, Bálint. Beta ensembles, stochastic Airy spectrum, and a diffusion, 2006. J. Amer. Math. Soc., To appear, arXiv:math.PR/0607331.

  10. Ramírez, José A.; Rider, Brian. Diffusion at the random matrix hard edge. Comm. Math. Phys. 288 (2009), no. 3, 887--906. MR2504858(2010g:47083)

  11. Stroock, Daniel W.; Varadhan, S. R. Srinivasa. Multidimensional diffusion processes. Springer-Verlag, Berlin-New York, 1979. MR0532498(81f:60108)

  12. Tao, Terence; Vu, Van. Random covariance matrices: Universality of local statistics of eigenvalues, 2009. Preprint: arXiv:0912.0966.

  13. Valkó, Benedek; Virág, Bálint. Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177 (2009), no. 3, 463--508. MR2534097

  14. Valkó, Benedek; Virág, Bálint. Random Schrödinger operators on long boxes, noise explosion and the GOE, 2009. Preprint, arXiv:0912.0097.

  15. Wishart, John. The generalized product moment distribution in samples from a normal multivariate population. Biometrika A, 20A:32--52, 1928.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.