A Note on Krylov's $L_p$-Theory for Systems of SPDEs

R. Mikulevicius (Vilnius University)
B. Rozovskii (University of Southern California)


We extend Krylov's $L_p$-solvability theory to the Cauchy problem for systems of parabolic stochastic partial differential equations. Some additional integrability and regularity properties are also presented.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-35

Publication Date: March 14, 2001

DOI: 10.1214/EJP.v6-85


  • Krylov, N. V. On $L_ p$-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27 (1996), no. 2, 313--340. MR1377477
  • Krylov, N. V. An analytic approach to SPDEs. Stochastic partial differential equations: six perspectives, 185--242, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. MR1661766
  • Brzeźniak, Zdzisław. Stochastic partial differential equations in M-type $2$ Banach spaces. Potential Anal. 4 (1995), no. 1, 1--45. MR1313905
  • A. L. Neihardt, Stochastic integrals in 2-uniformly smooth Banach spaces, Ph. D. Thesis, University of Wisconsin, 1978.
  • Mikulevicius, R.; Rozovskii, B. L. Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243--325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. MR1661767
  • Stochastics in finite and infinite dimensions. In honor of Gopinath Kallianpur. Edited by Takeyuki Hida, Rajeeva L. Karandikar, Hiroshi Kunita, Balram S. Rajput, Shinzo Watanabe and Jie Xiong. Trends in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2001. xxxvi+410 pp. ISBN: 0-8176-4137-8 MR1797075
  • R. Mikulevicius, B. L. Rozovskii, Stochastic Navier-Stokes Equations. Propagation of Chaos and Statistical Moments, In phA. Bensoussan Festschrift, IOS Press, Amsterdam, (2001), (to appear).
  • Triebel, Hans. Theory of function spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. 284 pp. ISBN: 3-7643-1381-1 MR0781540
  • Walsh, John B. An introduction to stochastic partial differential equations. École d'été de probabilités de Saint-Flour, XIV—1984, 265--439, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876085
  • J. Bergh, J. Löfström, phInterpolation Spaces, Springer-Verlag, Berlin, 1976.
  • Stein, Elias M. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp. MR0290095
  • Yor, M. Sur les intégrales stochastiques à valeurs dans un espace de Banach. (French) Ann. Inst. H. Poincaré Sect. B (N.S.) 10 (1974), 31--36. MR0358986

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.