Download this PDF file Fullscreen Fullscreen Off

#### References

- M. T. Barlow and J.-D. Deuschel. Invariance principle
for the random conductance model with unbounded conductances.
*Ann. Probab.***38**(2010), 234--276. Math. Review 2599199 - M. T. Barlow and B. M. Hambly. Parabolic Harnack
inequality and local limit theorem for percolation clusters.
*Electron. J. Probab.***14**(2009), 1--27. Math. Review 2471657 - M. T. Barlow and J. Černý. Convergence to
fractional kinetics for random walks associated with unbounded
conductances.
*To appear in Probab. Theory Related Fields, 2011.*Math. Review number not available. - M. T. Barlow and X. Zheng. The random conductance
model with Cauchy tails.
*Ann. Appl. Probab.***20**(2010), 869--889. Math. Review 2680551 - G. Ben Arous and J. Černý. Bouchaud's
model exhibits two aging regimes in dimension one.
*Ann. Appl. Probab.***15**(2005), 1161--1192. Math. Review 2134101 - G. Ben Arous and J. Černý. Dynamics of trap models. Ecole d'Eté de Physique des Houches, Session LXXXIII "Mathematical Statistical Physics", Elsevier, 2006, pp. 331--394. Math. Review 2581889
- G. Ben Arous and J. Černý. Scaling limit
for trap models on
**Z**^{d}.*Ann. Probab.***35**(2007), 2356--2384. Math. Review 2353391 - G. Ben Arous, J. Černý and T. Mountford.
Aging in two-dimensional Bouchaud's model.
*Probab. Theory Related Fields***134**(2006), 1--43. Math. Review 2221784 - P. Billingsley. Convergence of probability measures. John Wiley & Sons Inc., New York, 1968. Math. Review 0233396
- E. Bolthausen and A.-S. Sznitman. On the static and
dynamic points of view for certain random walks in random
environment.
*Methods Appl. Anal.***9**(2002), 345--375. Math. Review 2023130 - L. R. G. Fontes, M. Isopi and C. M. Newman. Random
walks with strongly inhomogeneous rates and singular
diffusions: convergence, localization and aging in one
dimension.
*Ann. Probab.***30**(2002), 579--604. Math. Review 1905852 - J.-C. Mourrat. Variance decay for functionals of the environment viewed by the particle. arXiv:0902.0204, to appear in Ann. Inst. H. Poincaré Probab. Statist. Math. Review number not available.
- J.-C. Mourrat. Scaling limit of the random walk among
random traps on
**Z**^{d}. arXiv:1001.2459, to appear in Ann. Inst. H. Poincaré Probab. Statist. Math. Review number not available. - C. Stone. Limit theorems for random walks, birth and
death processes, and diffusion processes.
*Illinois J. Math.***7**(1963), 638--660. Math. Review 0158440

This work is licensed under a Creative Commons Attribution 3.0 License.