The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Baik, Jinho; Deift, Percy; Johansson, Kurt. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), no. 4, 1119--1178. Math. Review 2000e:05006.
  2. Baryshnikov, Yu. GUEs and queues. Probab. Theory Related Fields 119 (2001), no. 2, 256--274. Math. Review 2002a:60165.
  3. Borodin, Alexei; Ferrari, Patrik L. Anisotropic growth of random surfaces in 2+ 1 dimensions. Available at arXiv:0804.3035. Math. Review number not available.
  4. Borodin, Alexei; Ferrari, Patrik L. Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab. 13 (2008), no. 50, 1380--1418. Math. Review 2009d:82104.
  5. Borodin, Alexei; Ferrari, Patrik L.; Prahofer, Michael; Sasamoto, Tomohiro; Warren, Jon. Maximum of Dyson Brownian motion and non-colliding systems with a boundary. Available at arXiv:0905.3989. Math. Review number not available.
  6. Borodin, Alexei; Ferrari, Patrik L.; Sasamoto, Tomohiro. Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP. Comm. Math. Phys. 283 (2008), no. 2, 417--449. Math. Review MR2430639.
  7. Defosseux, Manon. Orbit measures and interlaced determinantal point processes. C. R. Math. Acad. Sci. Paris 346 (2008), no. 13-14, 783--788. Math. Review 2009g:60065.
  8. Dieker, A.; Warren, J. On the Largest-Eigenvalue Process For Generalized Wishart Random Matrices. Available at arXiv:0812.1504. Math. Review number not available.
  9. Fulmek, Markus; Krattenthaler, Christian. Lattice path proofs for determinantal formulas for symplectic and orthogonal characters. J. Combin. Theory Ser. A 77 (1997), no. 1, 3--50. Math. Review 98h:05178.
  10. Fulton, William. Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997. x+260 pp. ISBN: 0-521-56144-2; 0-521-56724-6 Math. Review 99f:05119.
  11. Fyodorov, Yan V. Introduction to the random matrix theory: Gaussian unitary ensemble and beyond. Recent perspectives in random matrix theory and number theory, 31--78, London Math. Soc. Lecture Note Ser., 322, Cambridge Univ. Press, Cambridge, 2005. Math. Review 2007b:11133.
  12. Johansson, Kurt. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv:0707.0098. Math. Review number not available.
  13. Johansson, Kurt. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000), no. 2, 437--476. Math. Review 2001h:60177.
  14. Johansson, Kurt. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2002), no. 2, 225--280. Math. Review 2003h:15035.
  15. Johansson, Kurt. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003), no. 1-2, 277--329. Math. Review 2004m:82096.
  16. Johansson, Kurt. Random Matrices and determinantal processes. In Lecture Notes of the Les Houches Summer School 2005, Elselvier, 2005. Available at arXiv:math-ph/0510038. Math. Review number not available.
  17. König, Wolfgang; O'Connell, Neil; Roch, Sébastien. Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7 (2002), no. 5, 24 pp. (electronic). Math. Review 2003e:60174.
  18. Maliakas, Mihalis. On odd symplectic Schur functions. J. Algebra 211 (1999), no. 2, 640--646. Math. Review 2000c:20067.
  19. Nordenstam, Eric On the shuffling algorithm for domino tilings. Available at arXiv:0802.2592. Math. Review number not available.
  20. O'Connell, Neil. Conditioned random walks and the RSK correspondence. Random matrix theory. J. Phys. A 36 (2003), no. 12, 3049--3066. Math. Review 2004e:05201.
  21. O'Connell, Neil; Yor, Marc. A representation for non-colliding random walks. Electron. Comm. Probab. 7 (2002), 1--12 (electronic). Math. Review 2003e:60189.
  22. Prähofer, Michael; Spohn, Herbert. Scale invariance of the PNG droplet and the Airy process. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J. Statist. Phys. 108 (2002), no. 5-6, 1071--1106. Math. Review 2003i:82050.
  23. Proctor, Robert A. Odd symplectic groups. Invent. Math. 92 (1988), no. 2, 307--332. Math. Review 89c:20065.
  24. Rogers, L. C. G.; Pitman, J. W. Markov functions. Ann. Probab. 9 (1981), no. 4, 573--582. Math. Review 82j:60133.
  25. Sasamoto, T. Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech. Theory Exp. 2007, no. 7, P07007, 31 pp. (electronic). Math. Review 2008f:82077.
  26. Sundaram, Sheila. Tableaux in the representation theory of the classical Lie groups. Invariant theory and tableaux (Minneapolis, MN, 1988), 191--225, IMA Vol. Math. Appl., 19, Springer, New York, 1990. Math. Review 91e:22022.
  27. Tóth, Bálint; Vető, Bálint. Skorohod-reflection of Brownian paths and ${\rm BES}\sp 3$. Acta Sci. Math. (Szeged) 73 (2007), no. 3-4, 781--788. Math. Review 2009b:60261.
  28. Tracy, Craig A.; Widom, Harold. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994), no. 1, 151--174. Math. Review 95e:82003.
  29. Warren, Jon. Dyson's Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007), no. 19, 573--590 (electronic). Math. Review 2008f:60088.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.