The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Alexander, Kenneth S. Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 (1995), no. 1, 87--104. MR1330762 (96c:60114)
  2. Asmussen, Søren. Applied probability and queues. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1987. x+318 pp. ISBN: 0-471-91173-9 MR0889893 (89a:60208)
  3. Baccelli, Francois; Bordenave, Charles. The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17 (2007), no. 1, 305--359. MR2292589 (2008a:60025)
  4. Bordenave, Charles. Navigation on a Poisson point process. Ann. Appl. Probab. 18 (2008), no. 2, 708--746. MR2399710
  5. Ferrari, P. A.; Fontes, L. R. G.; Wu, Xian-Yuan. Two-dimensional Poisson trees converge to the Brownian web. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 5, 851--858. MR2165253 (2006h:60143)
  6. Ferrari, P. A.; Landim, C.; Thorisson, H. Poisson trees, succession lines and coalescing random walks. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 2, 141--152. MR2044812 (2005e:60105)
  7. Fontes, L. R. G.; Isopi, M.; Newman, C. M.; Ravishankar, K. The Brownian web: characterization and convergence. Ann. Probab. 32 (2004), no. 4, 2857--2883. MR2094432 (2006i:60128)
  8. Gangopadhyay, Sreela; Roy, Rahul; Sarkar, Anish. Random oriented trees: a model of drainage networks. Ann. Appl. Probab. 14 (2004), no. 3, 1242--1266. MR2071422 (2005i:60194)
  9. Howard, A. D. Simulation of stream networks by headward growth and branching. Geogr. Anal. , (1971), no. 3, 29--50.
  10. Leopold, L. B.; Langbein, W. B. The concept of entropy in landscape evolution. U.S. Geol. Surv. Prof. Paper (1962), 500-A.
  11. Nandi, A.K.; Manna, S.S. A transition from river networks to scale-free networks. New J. Phys. (2007), {bf 9 }, 30,
  12. Newman, C. M.; Stein, D. L. Ground-state structure in a highly disordered spin-glass model. J. Statist. Phys. 82 (1996), no. 3-4, 1113--1132. MR1372437 (97a:82054)
  13. Pemantle, Robin. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19 (1991), no. 4, 1559--1574. MR1127715 (92g:60014)
  14. Rodriguez-Iturbe, I.; Rinaldo, A. Fractal river basins: chance and self-organization.Cambridge Univ. Press , New York. (1997)
  15. Scheidegger, A. E. A stochastic model for drainage pattern into an intramontane trench. Bull. Ass. Sci. Hydrol. (1967), 12, 15--20.
  16. Spitzer, Frank. Principles of random walk. The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1964 xi+406 pp. MR0171290 (30 #1521)
  17. Tóth, Bálint; Werner, Wendelin. The true self-repelling motion. Probab. Theory Related Fields 111 (1998), no. 3, 375--452. MR1640799 (99i:60092)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.