### A special set of exceptional times for dynamical random walk on $Z^2$

**Gideon Amir**

*(University of Toronto)*

**Christopher Hoffman**

*(University of Washington)*

#### Abstract

In [2] Benjamini, Haggstrom, Peres and Steif introduced the model of dynamical random walk on the $d$-dimensional lattice $Z^d$. This is a continuum of random walks indexed by a time parameter $t$. They proved that for dimensions $d=3,4$ there almost surely exist times $t$ such that the random walk at time $t$ visits the origin infinitely often, but for dimension 5 and up there almost surely do not exist such $t$. Hoffman showed that for dimension 2 there almost surely exists $t$ such that the random walk at time $t$ visits the origin only finitely many times [5]. We refine the results of [5] for dynamical random walk on $Z^2$, showing that with probability one the are times when the origin is visited only a finite number of times while other points are visited infinitely often.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1927-1951

Publication Date: October 30, 2008

DOI: 10.1214/EJP.v13-571

#### References

- Adelman, Omer; Burdzy, Krzysztof; Pemantle, Robin. Sets avoided by Brownian motion.
*Ann. Probab.*26 (1998), no. 2, 429--464. MR1626170 (99i:60152) - Benjamini, Itai; Häggström, Olle; Peres, Yuval; Steif, Jeffrey E. Which properties of a random sequence are dynamically sensitive?
*Ann. Probab.*31 (2003), no. 1, 1--34. MR1959784 (2004d:60195) - Fukushima, Masatoshi. Basic properties of Brownian motion and a capacity on the Wiener space.
*J. Math. Soc. Japan*36 (1984), no. 1, 161--176. MR0723601 (85h:60114) - Haggstrom, O., Peres, Y. and Steif, J. E. (1997).Dynamical percolation. Ann. Inst. H. Poincare Probab. Statist.33 497--528.
- Hoffman, Christopher. Recurrence of simple random walk on ${Bbb Z}sp 2$ is dynamically sensitive.
*ALEA Lat. Am. J. Probab. Math. Stat.*1 (2006), 35--45 (electronic). MR2235173 (2007b:60111) - Kozma, Gady; Schreiber, Ehud. An asymptotic expansion for the discrete harmonic potential.
*Electron. J. Probab.*9 (2004), no. 1, 1--17 (electronic). MR2041826 (2005f:60165) - Lawler, Gregory F. Intersections of random walks.Probability and its Applications.
*Birkhäuser Boston, Inc., Boston, MA,*1991. 219 pp. ISBN: 0-8176-3557-2 MR1117680 (92f:60122) - Khoshnevisan, Davar; Levin, David A.; Méndez-Hernández, Pedro J. Exceptional times and invariance for dynamical random walks.
*Probab. Theory Related Fields*134 (2006), no. 3, 383--416. MR2226886 (2008j:60181) - Levin, D., Khoshnevisan D. and Mendez, P. On Dynamical GaussianRandom Walks. math.PR/0307346 to appear in Annals of Probability.
- Penrose, M. D. On the existence of self-intersections for quasi-every Brownian path in space.
*Ann. Probab.*17 (1989), no. 2, 482--502. MR0985374 (90a:60148) - Peres, Yuval. Intersection-equivalence of Brownian paths and certain branching processes.
*Comm. Math. Phys.*177 (1996), no. 2, 417--434. MR1384142 (98k:60143) - Spitzer, Frank. Principles of random walks.Second edition.Graduate Texts in Mathematics, Vol. 34.
*Springer-Verlag, New York-Heidelberg,*1976. xiii+408 pp. MR0388547 (52 #9383)

This work is licensed under a Creative Commons Attribution 3.0 License.