The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Benjamini, Itai; Peres, Yuval. Markov chains indexed by trees. Ann. Probab. 22 (1994), no. 1, 219--243. MR1258875 (94j:60131)
  2. Comets, F.; Menshikov, M. V.; Popov, S. Yu. One-dimensional branching random walk in a random environment: a classification. I Brazilian School in Probability (Rio de Janeiro, 1997). Markov Process. Related Fields 4 (1998), no. 4, 465--477. MR1677053 (2000c:60131)
  3. Comets, Francis; Popov, Serguei. On multidimensional branching random walks in random environment. Ann. Probab. 35 (2007), no. 1, 68--114. MR2303944 (2007k:60336)
  4. Gantert, N.; Müller, S. The critical branching Markov chain is transient. Markov Process. Related Fields. 12 (2006), no. 4, 805--814. MR2284404 (2008c:60082)
  5. Harris, Theodore E. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119 Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J. 1963 xiv+230 pp. MR0163361 (29 #664)
  6. Machado, F. P.; Popov, S. Yu. One-dimensional branching random walks in a Markovian random environment. J. Appl. Probab. 37 (2000), no. 4, 1157--1163. MR1808881 (2002f:60141)
  7. Machado, F. P.; Popov, S. Yu. Branching random walk in random environment on trees. Stochastic Process. Appl. 106 (2003), no. 1, 95--106. MR1983045 (2005e:60238)
  8. Menshikov, M. V.; Volkov, S. E. Branching Markov chains: qualitative characteristics. Markov Process. Related Fields 3 (1997), no. 2, 225--241. MR1468175 (99c:60192)
  9. Müller, S. Recurrence and transience for branching random walks in an iid random environment. Markov Process. Related Fields. 14 (2008), no. 1, 115--130. Math. Review number not available.
  10. Pemantle, Robin; Stacey, Alan M. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Ann. Probab. 29 (2001), no. 4, 1563--1590. MR1880232 (2002m:60193)
  11. Pruitt, William E. Eigenvalues of non-negative matrices. Ann. Math. Statist. 35 1964 1797--1800. MR0168579 (29 #5839)
  12. Schinazi, Rinaldo. On multiple phase transitions for branching Markov chains. J. Statist. Phys. 71 (1993), no. 3-4, 507--511. MR1219019 (94c:60141)
  13. Sion, Maurice. On general minimax theorems. Pacific J. Math. 8 1958 171--176. MR0097026 (20 #3506)
  14. Stacey, Alan. Branching random walks on quasi-transitive graphs. Combinatorics, probability and computing (Oberwolfach, 2001). Combin. Probab. Comput. 12 (2003), no. 3, 345--358. MR1988981 (2004d:60223)
  15. Sznitman, Alain-Sol. An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122 (2002), no. 4, 509--544. MR1902189 (2003c:60168)
  16. Sznitman, Alain-Sol. On new examples of ballistic random walks in random environment. Ann. Probab. 31 (2003), no. 1, 285--322. MR1959794 (2004d:60263)
  17. Varadhan, S. R. S. Large deviations for random walks in a random environment. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56 (2003), no. 8, 1222--1245. MR1989232 (2004d:60073)
  18. Woess, Wolfgang. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3 MR1743100 (2001k:60006)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.