The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. D. Aldous and P. Diaconis, Hammersley's interacting particle process and longest increasing subsequences, Probab. Theory Relat. Fields 103, (1995), 199--213. Math Review article not available.
  2. R. Durrett, Probability: Theory and Examples, Wadsworth, Pacific Grove (1991). Math Review link
  3. M. Ekhaus and T. Sepp"al"ainen, Stochastic dynamics macroscopically governed by the porous medium equation for isothermal flow, Ann. Acad. Sci. Fenn. Ser. A I Math (to appear). Math Review article not available.
  4. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York (1985). Math Review link
  5. S. Feng, I. Iscoe, and T. Sepp"al"ainen, A class of stochastic evolutions that scale to the porous medium equation, J. Statist. Phys. ( to appear). Math Review article not available.
  6. P. A. Ferrari, Shocks in one-dimensional processes with drift, Probability and Phase Transitions, ed. G. Grimmett, Kluwer Academic Publishers (1994). Math Review link
  7. J. M. Hammersley, A few seedlings of research, Proc. Sixth Berkeley Symp. Math. Stat. Probab. Vol. I, (1972), 345--394. Math Review link
  8. C. Kipnis, Central limit theorems for infinite series of queues and applications to simple exclusion, Ann. Probab. 14, (1986), 397--408. Math Review link
  9. P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10, (1957), 537--566. Math Review link
  10. P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, (1973). Math Review link
  11. T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, (1985). Math Review link
  12. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London (1982). Math Review link
  13. F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on $mmZ^d$, Comm. Math. Phys. 140, (1991), 417--448. Math Review link
  14. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, (1970). Math Review link
  15. H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58, (1981), 41--53. Math Review link
  16. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, (1983). Math Review link
  17. Y. Suzuki and K. Uchiyama, Hydrodynamic limit for a spin system on a multidimensional lattice, Probab. Theory Relat. Fields 95, (1993), 47--74. Math Review link

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.