The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Ben Arous, Gérard; Černý, Jiří. Scaling limit for trap models on $\Bbb Z^ d$. Ann. Probab. 35 (2007), no. 6, 2356--2384. MR2353391
  • Bolthausen, Erwin. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989), no. 1, 108--115. MR0972774
  • Borodin, A. N. A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786--787. MR0543530
  • Borodin, A. N. Limit theorems for sums of independent random variables defined on a transient random walk. (Russian) Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 17--29, 237, 244. MR0535455
  • Csáki, E. An integral test for the supremum of Wiener local time. Probab. Theory Related Fields 83 (1989), no. 1-2, 207--217. MR1012499
  • Csáki, Endre; König, Wolfgang; Shi, Zhan. An embedding for the Kesten-Spitzer random walk in random scenery. Stochastic Process. Appl. 82 (1999), no. 2, 283--292. MR1700010
  • Guillotin-Plantard, Nadine; Poisat, Julien. Quenched central limit theorems for random walks in random scenery. Stochastic Process. Appl. 123 (2013), no. 4, 1348--1367. MR3016226
  • Guillotin-Plantard, N., Poisat, J. and Dos Santos, R.S. (2013) A quenched central limit theorem for planar random walks in random sceneries, Submitted.
  • Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 5--25. MR0550121
  • Khoshnevisan, Davar; Lewis, Thomas M. A law of the iterated logarithm for stable processes in random scenery. Stochastic Process. Appl. 74 (1998), no. 1, 89--121. MR1624017
  • Perkins, Edwin. Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 (1982), no. 1, 79--117. MR0661760
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • Strassen, V. An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 1964 211--226 (1964). MR0175194
  • Zhang, Li-Xin. The strong approximation for the Kesten-Spitzer random walk. Statist. Probab. Lett. 53 (2001), no. 1, 21--26. MR1843337

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.