Continuum percolation for Gibbs point processes

Kaspar Stucki (Universität Göttingen)


We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-10

Publication Date: August 7, 2013

DOI: 10.1214/ECP.v18-2837


  • David Aristoff. Percolation of hard disks. Preprint, 2012. Available at
  • Baddeley, A. J.; van Lieshout, M. N. M. Area-interaction point processes. Ann. Inst. Statist. Math. 47 (1995), no. 4, 601--619. MR1370279
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition. Probability and its Applications (New York). Springer, New York, 2008. xviii+573 pp. ISBN: 978-0-387-21337-8 MR2371524
  • Dereudre, David; Drouilhet, Remy; Georgii, Hans-Otto. Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Related Fields 153 (2012), no. 3-4, 643--670. MR2948688
  • Georgii, Hans-Otto. Gibbs measures and phase transitions. de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1988. xiv+525 pp. ISBN: 0-89925-462-4 MR0956646
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Sabine Jansen. Continuum percolation for Gibbsian point processes with attractive interactions. Preprint, 2012. Available at
  • Kendall, Wilfrid S.; Møller, Jesper. Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. in Appl. Probab. 32 (2000), no. 3, 844--865. MR1788098
  • Meester, Ronald; Roy, Rahul. Continuum percolation. Cambridge Tracts in Mathematics, 119. Cambridge University Press, Cambridge, 1996. x+238 pp. ISBN: 0-521-47504-X MR1409145
  • Møller, Jesper; Waagepetersen, Rasmus Plenge. Statistical inference and simulation for spatial point processes. Monographs on Statistics and Applied Probability, 100. Chapman & Hall/CRC, Boca Raton, FL, 2004. xvi+300 pp. ISBN: 1-58488-265-4 MR2004226
  • Mürmann, Michael G. Equilibrium distributions of physical clusters. Comm. Math. Phys. 45 (1975), no. 3, 233--246. MR0413957
  • Nguyen, Xuan-Xanh; Zessin, Hans. Integral and differential characterizations of the Gibbs process. Math. Nachr. 88 (1979), 105--115. MR0543396
  • Pechersky, E.; Yambartsev, A. Percolation properties of the non-ideal gas. J. Stat. Phys. 137 (2009), no. 3, 501--520. MR2564287
  • Penrose, Mathew D. On a continuum percolation model. Adv. in Appl. Probab. 23 (1991), no. 3, 536--556. MR1122874
  • Ruelle, David. Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-Amsterdam 1969 xi+219 pp. MR0289084
  • Zessin, H. A theorem of Michael Mürmann revisited. Izv. Nats. Akad. Nauk Armenii Mat. 43 (2008), no. 1, 69--80; translation in J. Contemp. Math. Anal. 43 (2008), no. 1, 50--58 MR2465000
  • Zuev, S. A.; Sidorenko, A. F. Continuous models of percolation theory. I. (Russian) Teoret. Mat. Fiz. 62 (1985), no. 1, 76--86. MR0782099

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.