Exact simulation of Hawkes process with exponentially decaying intensity

Angelos Dassios (London School of Economics)
Hongbiao Zhao (Xiamen University)


We introduce a numerically efficient simulation algorithm for Hawkes process with exponentially decaying intensity, a special case of general Hawkes process that is most widely implemented in practice. This computational method is able to exactly generate the point process and intensity process, by sampling interarrival times directly via the underlying analytic distribution functions without numerical inverse, and hence avoids simulating intensity paths and introducing discretisation bias. Moreover, it is flexible to generate points with either stationary or non-stationary intensity, starting from any arbitrary time with any arbitrary initial intensity. It is also straightforward to implement, and can easily extend to multi-dimensional versions, for further applications in modelling contagion risk or clustering arrival of events in finance, insurance, economics and many other fields. Simulation algorithms for one dimension and multi-dimension are represented, with numerical examples of univariate and bivariate processes provided as illustrations.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-13

Publication Date: July 15, 2013

DOI: 10.1214/ECP.v18-2717


  • Aït-Sahalia, Y., Cacho-Diaz, J., and Laeven, R. J. A. (2013). Modeling financial contagion using mutually exciting jump processes. Review of Financial Studies. (to appear).
  • Aït-Sahalia, Y. and Hurd, T. (2012). Portfolio choice in markets with contagion. Working paper. Bendheim Center for Finance at Princeton University.
  • Bowsher, Clive G. Modelling security market events in continuous time: intensity based, multivariate point process models. J. Econometrics 141 (2007), no. 2, 876--912. MR2413490
  • Brix, Anders; Kendall, Wilfrid S. Simulation of cluster point processes without edge effects. Adv. in Appl. Probab. 34 (2002), no. 2, 267--280. MR1909914
  • Chornoboy, E. S.; Schramm, L. P.; Karr, A. F. Maximum likelihood identification of neural point process systems. Biol. Cybernet. 59 (1988), no. 4-5, 265--275. MR0961117
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. I. Elementary theory and methods. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2003. xxii+469 pp. ISBN: 0-387-95541-0 MR1950431
  • Dassios, Angelos; Zhao, Hongbiao. A dynamic contagion process. Adv. in Appl. Probab. 43 (2011), no. 3, 814--846. MR2858222
  • Dassios, Angelos; Zhao, Hongbiao. Ruin by dynamic contagion claims. Insurance Math. Econom. 51 (2012), no. 1, 93--106. MR2928746
  • Embrechts, Paul; Liniger, Thomas; Lin, Lu. Multivariate Hawkes processes: an application to financial data. J. Appl. Probab. 48A (2011), New frontiers in applied probability: a Festschrift for Soren Asmussen, 367--378. ISBN: 0-902016-08-3 MR2865638
  • Engle, R. F. and Lunde, A. (2003). Trades and quotes: a bivariate point process. Journal of Financial Econometrics, 1(2):159--188.
  • Errais, Eymen; Giesecke, Kay; Goldberg, Lisa R. Affine point processes and portfolio credit risk. SIAM J. Financial Math. 1 (2010), 642--665. MR2719785
  • Giesecke, K. and Kim, B. (2007). Estimating tranche spreads by loss process simulation. In Proceedings of the 2007 Winter Simulation Conference, pages 967--975. IEEE Press.
  • Giesecke, K., Kim, B., and Zhu, S. (2011). Monte Carlo algorithms for default timing problems. Management Science, 57(12):2115--2129.
  • Hawkes, Alan G. Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 1971 83--90. MR0278410
  • Hawkes, Alan G.; Oakes, David. A cluster process representation of a self-exciting process. J. Appl. Probability 11 (1974), 493--503. MR0378093
  • Lewis, P. A. W.; Shedler, G. S. Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Quart. 26 (1979), no. 3, 403--413. MR0546120
  • Liniger, T. J. (2009). Multivariate Hawkes Processes. PhD thesis, Eidgenössische Technische Hochschule (ETH).
  • Møller, Jesper; Rasmussen, Jakob G. Perfect simulation of Hawkes processes. Adv. in Appl. Probab. 37 (2005), no. 3, 629--646. MR2156552
  • Møller, Jesper; Rasmussen, Jakob G. Approximate simulation of Hawkes processes. Methodol. Comput. Appl. Probab. 8 (2006), no. 1, 53--64. MR2253076
  • Oakes, David. The Markovian self-exciting process. J. Appl. Probability 12 (1975), 69--77. MR0362522
  • Ogata, Y. (1981). On Lewis' simulation method for point processes. IEEE Transactions on Information Theory, 27(1):23--31.
  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401):9--27.
  • Rasmussen, J. G. (2011). Bayesian inference for Hawkes processes. Methodology and Computing in Applied Probability, pages 1--20.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.