The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Bassetti, Federico; Gabetta, Ester. Survey on probabilistic methods for the study of Kac-like equations. Boll. Unione Mat. Ital. (9) 4 (2011), no. 2, 187--212. MR2840602
  • Bassetti, Federico; Ladelli, Lucia; Matthes, Daniel. Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields 150 (2011), no. 1-2, 77--109. MR2800905
  • Barthe, F.; Cordero-Erausquin, D.; Maurey, B. Entropy of spherical marginals and related inequalities. J. Math. Pures Appl. (9) 86 (2006), no. 2, 89--99. MR2247452
  • Ben Arous, G.; Zeitouni, O. Increasing propagation of chaos for mean field models. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 1, 85--102. MR1669916
  • Carlen, E.; Carvalho, M. C.; Loss, M. Many-body aspects of approach to equilibrium. Séminaire: Équations aux Dérivées Partielles, 2000–2001, Exp. No. XIX, 12 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2001. MR1860691
  • Carlen, E. A.; Carvalho, M. C.; Loss, M. Determination of the spectral gap for Kac's master equation and related stochastic evolution. Acta Math. 191 (2003), no. 1, 1--54. MR2020418
  • Carlen, Eric A.; Carvalho, Maria C.; Le Roux, Jonathan; Loss, Michael; Villani, Cédric. Entropy and chaos in the Kac model. Kinet. Relat. Models 3 (2010), no. 1, 85--122. MR2580955
  • Carlen, Eric A.; Geronimo, Jeffrey S.; Loss, Michael. Determination of the spectral gap in the Kac model for physical momentum and energy-conserving collisions. SIAM J. Math. Anal. 40 (2008), no. 1, 327--364. MR2403324
  • Carrapatoso K.: Quantitative and Qualitative Kac's Chaos on the Boltzmann Sphere. ARXIV
  • Cercignani, C. $H$-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech. (Arch. Mech. Stos.) 34 (1982), no. 3, 231--241 (1983). MR0715658
  • Dolera, Emanuele; Gabetta, Ester; Regazzini, Eugenio. Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. Ann. Appl. Probab. 19 (2009), no. 1, 186--209. MR2498676
  • Einav, Amit. On Villani's conjecture concerning entropy production for the Kac master equation. Kinet. Relat. Models 4 (2011), no. 2, 479--497. MR2786394
  • Einav, Amit. A counter example to Cercignani's conjecture for the $d$ dimensional Kac model. J. Stat. Phys. 148 (2012), no. 6, 1076--1103. MR2975524
  • Einav A.: A Few Ways to Destroy Entropic Chaoticity on Kac's Sphere. phTo appear in Comm. Math. Sci. ARXIV
  • Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403
  • Goudon, Thierry; Junca, Stéphane; Toscani, Giuseppe. Fourier-based distances and Berry-Esseen like inequalities for smooth densities. Monatsh. Math. 135 (2002), no. 2, 115--136. MR1894092
  • Hauray M. and Mischler S.: On Kac's Chaos and Related Problems. HAL:
  • Janvresse, Elise. Spectral gap for Kac's model of Boltzmann equation. Ann. Probab. 29 (2001), no. 1, 288--304. MR1825150
  • Kac, M. Foundations of kinetic theory. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171--197. University of California Press, Berkeley and Los Angeles, 1956. MR0084985
  • Lanford, Oscar E., III. Time evolution of large classical systems. Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1--111. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975. MR0479206
  • Lott, John; Villani, Cédric. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009), no. 3, 903--991. MR2480619
  • Maslen, David K. The eigenvalues of Kac's master equation. Math. Z. 243 (2003), no. 2, 291--331. MR1961868
  • Matthes, Daniel; Toscani, Giuseppe. Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity 23 (2010), no. 9, 2081--2100. MR2672637
  • McKean, H. P., Jr. An exponential formula for solving Boltmann's equation for a Maxwellian gas. J. Combinatorial Theory 2 1967 358--382. MR0224348
  • Mischler S. and Mouhot C.: Kac's Program in Kinetic Theory. phTo appear in Inventiones Mathematicae. ARXIV
  • Pinsker, M. S. Information and information stability of random variables and processes. Translated and edited by Amiel Feinstein Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam 1964 xii+243 pp. MR0213190
  • Sznitman, Alain-Sol. Topics in propagation of chaos. École d'Été de Probabilités de Saint-Flour XIX—1989, 165--251, Lecture Notes in Math., 1464, Springer, Berlin, 1991. MR1108185
  • Villani, Cédric. A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, 71--305, North-Holland, Amsterdam, 2002. MR1942465
  • Villani, Cédric. Cercignani's conjecture is sometimes true and always almost true. Comm. Math. Phys. 234 (2003), no. 3, 455--490. MR1964379
  • Villani, Cédric. Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3 MR2459454

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.