The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Bleher, Pavel M.; Kuijlaars, Arno B. J. Integral representations for multiple Hermite and multiple Laguerre polynomials. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 2001--2014. MR2187942
  • Dyson, Freeman J. A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys. 3 1962 1191--1198. MR0148397
  • Eynard, Bertrand; Mehta, Madan Lal. Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31 (1998), no. 19, 4449--4456. MR1628667
  • Forrester, P. J. Log-gases and random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010. xiv+791 pp. ISBN: 978-0-691-12829-0 MR2641363
  • Grabiner, David J. Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 2, 177--204. MR1678525
  • Kallenberg, Olav. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, 1997. xii+523 pp. ISBN: 0-387-94957-7 MR1464694
  • Katori, Makoto; Tanemura, Hideki. Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45 (2004), no. 8, 3058--3085. MR2077500
  • Katori, Makoto; Tanemura, Hideki. Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129 (2007), no. 5-6, 1233--1277. MR2363394
  • Katori, Makoto; Tanemura, Hideki. Zeros of Airy function and relaxation process. J. Stat. Phys. 136 (2009), no. 6, 1177--1204. MR2550400
  • Katori, Makoto; Tanemura, Hideki. Non-equilibrium dynamics of Dyson's model with an infinite number of particles. Comm. Math. Phys. 293 (2010), no. 2, 469--497. MR2563791
  • Katori, Makoto; Tanemura, Hideki. Noncolliding squared Bessel processes. J. Stat. Phys. 142 (2011), no. 3, 592--615. MR2771046
  • Katori, Makoto; Tanemura, Hideki. Noncolliding processes, matrix-valued processes and determinantal processes [translation of MR2561146]. Sugaku Expositions 24 (2011), no. 2, 263--289. MR2882846
  • Krattenthaler, Christian. Generating functions for plane partitions of a given shape. Manuscripta Math. 69 (1990), no. 2, 173--201. MR1072987
  • Levin, B. Ya. Lectures on entire functions. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Translations of Mathematical Monographs, 150. American Mathematical Society, Providence, RI, 1996. xvi+248 pp. ISBN: 0-8218-0282-8 MR1400006
  • Mehta, Madan Lal. Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp. ISBN: 0-12-088409-7 MR2129906
  • Nagao, T. and Forrester, P.: Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, phPhys. Lett. A247, (1998). 42-46.
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • Spohn, Herbert. Interacting Brownian particles: a study of Dyson's model. Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986), 151--179, IMA Vol. Math. Appl., 9, Springer, New York, 1987. MR0914993

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.