Complex Brownian motion representation of the Dyson model

Makoto Katori (Chuo university)
Hideki Tanemura (Chiba university)


Dyson's Brownian motion model with the parameter $\beta=2$, which we simply call the Dyson model in the present paper, is realized as an $h$-transform of the absorbing Brownian motion in a Weyl chamber of type A. Depending on initial configuration with a finite number of particles, we define a set of entire functions and introduce a martingale for a system of independent complex Brownian motions (CBMs), which is expressed by a determinant of a matrix with elements given by the conformal transformations of CBMs by the entire functions. We prove that the Dyson model can be represented by the system of independent CBMs weighted by this determinantal martingale. From this CBM representation, the Eynard-Mehta-type correlation kernel is derived and the Dyson model is shown to be determinantal. The CBM representation is a useful extension of $h$-transform, since it works also in infinite particle systems. Using this representation, we prove the tightness of a series of processes, which converges to the Dyson model with an infinite number of particles, and the noncolliding property of the limit process.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-16

Publication Date: January 12, 2013

DOI: 10.1214/ECP.v18-2554


  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Bleher, Pavel M.; Kuijlaars, Arno B. J. Integral representations for multiple Hermite and multiple Laguerre polynomials. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 2001--2014. MR2187942
  • Dyson, Freeman J. A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys. 3 1962 1191--1198. MR0148397
  • Eynard, Bertrand; Mehta, Madan Lal. Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31 (1998), no. 19, 4449--4456. MR1628667
  • Forrester, P. J. Log-gases and random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010. xiv+791 pp. ISBN: 978-0-691-12829-0 MR2641363
  • Grabiner, David J. Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 2, 177--204. MR1678525
  • Kallenberg, Olav. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, 1997. xii+523 pp. ISBN: 0-387-94957-7 MR1464694
  • Katori, Makoto; Tanemura, Hideki. Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45 (2004), no. 8, 3058--3085. MR2077500
  • Katori, Makoto; Tanemura, Hideki. Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129 (2007), no. 5-6, 1233--1277. MR2363394
  • Katori, Makoto; Tanemura, Hideki. Zeros of Airy function and relaxation process. J. Stat. Phys. 136 (2009), no. 6, 1177--1204. MR2550400
  • Katori, Makoto; Tanemura, Hideki. Non-equilibrium dynamics of Dyson's model with an infinite number of particles. Comm. Math. Phys. 293 (2010), no. 2, 469--497. MR2563791
  • Katori, Makoto; Tanemura, Hideki. Noncolliding squared Bessel processes. J. Stat. Phys. 142 (2011), no. 3, 592--615. MR2771046
  • Katori, Makoto; Tanemura, Hideki. Noncolliding processes, matrix-valued processes and determinantal processes [translation of MR2561146]. Sugaku Expositions 24 (2011), no. 2, 263--289. MR2882846
  • Krattenthaler, Christian. Generating functions for plane partitions of a given shape. Manuscripta Math. 69 (1990), no. 2, 173--201. MR1072987
  • Levin, B. Ya. Lectures on entire functions. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Translations of Mathematical Monographs, 150. American Mathematical Society, Providence, RI, 1996. xvi+248 pp. ISBN: 0-8218-0282-8 MR1400006
  • Mehta, Madan Lal. Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp. ISBN: 0-12-088409-7 MR2129906
  • Nagao, T. and Forrester, P.: Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, phPhys. Lett. A247, (1998). 42-46.
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • Spohn, Herbert. Interacting Brownian particles: a study of Dyson's model. Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986), 151--179, IMA Vol. Math. Appl., 9, Springer, New York, 1987. MR0914993

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.