Correlation functions for zeros of a Gaussian power series and Pfaffians

Sho Matsumoto (Nagoya University)
Tomoyuki Shirai (Kyushu University)


We show that the zeros of the random power series with i.i.d. real Gaussian coefficients form a Pfaffian point process. We also show that the product moments for absolute values and signatures of the power series can also be expressed by Pfaffians.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-18

Publication Date: April 15, 2013

DOI: 10.1214/EJP.v18-2545


  • Borodin, A.; Sinclair, C. D. The Ginibre ensemble of real random matrices and its scaling limits. Comm. Math. Phys. 291 (2009), no. 1, 177--224. MR2530159
  • Ceccherini-Silberstein, Tullio; Scarabotti, Fabio; Tolli, Filippo. Representation theory of the symmetric groups. The Okounkov-Vershik approach, character formulas, and partition algebras. Cambridge Studies in Advanced Mathematics, 121. Cambridge University Press, Cambridge, 2010. xvi+412 pp. ISBN: 978-0-521-11817-0 MR2643487
  • Edelman, Alan; Kostlan, Eric. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1--37. MR1290398
  • Forrester, P. J.: The limiting Kac random polynomial and truncated random orthogonal matrices. phJ. Stat. Mech., (2010), P12018, 12 pp.
  • Forrester, P. J. and Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. phPhys. Rev. Lett. 99, (2007), 050603, 4 pp.
  • Hammersley, J. M. The zeros of a random polynomial. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pp. 89--111. University of California Press, Berkeley and Los Angeles, 1956. MR0084888
  • Hough, J. Ben; Krishnapur, Manjunath; Peres, Yuval; Virág, Bálint. Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009. x+154 pp. ISBN: 978-0-8218-4373-4 MR2552864
  • Ishikawa, Masao; Kawamuko, Hiroyuki; Okada, Soichi. A Pfaffian-Hafnian analogue of Borchardt's identity. Electron. J. Combin. 12 (2005), Note 9, 8 pp. (electronic). MR2156699
  • Kac, M. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49, (1943). 314--320. MR0007812
  • Kahane, Jean-Pierre. Some random series of functions. D. C. Heath and Co. Raytheon Education Co., Lexington, Mass. 1968 viii+184 pp. MR0254888
  • Krishnapur, Manjunath. From random matrices to random analytic functions. Ann. Probab. 37 (2009), no. 1, 314--346. MR2489167
  • Logan, B. F.; Shepp, L. A. Real zeros of random polynomials. II. Proc. London Math. Soc. (3) 18 1968 308--314. MR0234513
  • Nabeya, Seiji. Absolute moments in $2$-dimensional normal distribution. Ann. Inst. Statist. Math., Tokyo 3, (1951). 2--6. MR0045347
  • Nabeya, Seiji. Absolute moments in $3$-dimensional normal distribution. Ann. Inst. Statist. Math., Tokyo 4, (1952). 15--30. MR0052072
  • Peres, Yuval; Virág, Bálint. Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 194 (2005), no. 1, 1--35. MR2231337
  • Paley, Raymond E. A. C.; Wiener, Norbert. Fourier transforms in the complex domain. Reprint of the 1934 original. American Mathematical Society Colloquium Publications, 19. American Mathematical Society, Providence, RI, 1987. x+184 pp. ISBN: 0-8218-1019-7 MR1451142
  • Rice, S. O. Mathematical analysis of random noise. Bell System Tech. J. 24, (1945). 46--156. MR0011918
  • Shepp, Larry A.; Vanderbei, Robert J. The complex zeros of random polynomials. Trans. Amer. Math. Soc. 347 (1995), no. 11, 4365--4384. MR1308023
  • Tribe, Roger; Zaboronski, Oleg. Pfaffian formulae for one dimensional coalescing and annihilating systems. Electron. J. Probab. 16 (2011), no. 76, 2080--2103. MR2851057
  • Watanabe, S. Lectures on stochastic differential equations and Malliavin calculus. Notes by M. Gopalan Nair and B. Rajeev. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 73. Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1984. iii+111 pp. ISBN: 3-540-12897-2 MR0742628
  • Watanabe, Shinzo. Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 15 (1987), no. 1, 1--39. MR0877589
  • Zvonkin, A. Matrix integrals and map enumeration: an accessible introduction. Combinatorics and physics (Marseilles, 1995). Math. Comput. Modelling 26 (1997), no. 8-10, 281--304. MR1492512

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.