Anomalous heat kernel behaviour for the dynamic random conductance model

Stephen Buckley (University of Oxford)


We introduce the time dynamic random conductance model and consider the heat kernel for the random walk on this environment. In the case where conductances are bounded above, an example environment is presented which exhibits heat kernel decay that is asymptotically slower than in the well studied time homogeneous case - being close to $O\left( n^{-1}\right) $ as opposed to $O\left( n^{-2}\right) $. The example environment given is a modification of an environment introduced in Berger, Biskup, Hoffman and Kozma (2008).

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-11

Publication Date: January 3, 2013

DOI: 10.1214/ECP.v18-2525


  • Antal, Peter; Pisztora, Agoston. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996), no. 2, 1036--1048. MR1404543
  • Bandyopadhyay, Antar; Zeitouni, Ofer. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205--224. MR2249655
  • Barlow, Martin T.; Černý, Jiří. Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Related Fields 149 (2011), no. 3-4, 639--673. MR2776627
  • Berger, N.; Biskup, M.; Hoffman, C. E.; Kozma, G. Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 2, 374--392. MR2446329
  • M. Biskup and O. Boukhadra. Subdiffusive heat kernel decay in four-dimensional iid random conductance models. ARXIV1010.5542v1 %arXiv:1010.5542v1 (2010).
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment. Probab. Theory Related Fields 109 (1997), no. 2, 245--273. MR1477651
  • Boukhadra, Omar. Heat-kernel estimates for random walk among random conductances with heavy tail. Stochastic Process. Appl. 120 (2010), no. 2, 182--194. MR2576886
  • Boukhadra, Omar. Standard spectral dimension for the polynomial lower tail random conductances model. Electron. J. Probab. 15 (2010), no. 68, 2069--2086. MR2745726
  • S. Buckley. Problems in Random Walks in Random Environments. DPhil thesis, University of Oxford (2011).
  • Coulhon, Thierry; Grigorʹyan, Alexander; Zucca, Fabio. The discrete integral maximum principle and its applications. Tohoku Math. J. (2) 57 (2005), no. 4, 559--587. MR2203547
  • Delmotte, Thierry. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15 (1999), no. 1, 181--232. MR1681641
  • Giacomin, Giambattista; Olla, Stefano; Spohn, Herbert. Equilibrium fluctuations for $\nabla\phi$ interface model. Ann. Probab. 29 (2001), no. 3, 1138--1172. MR1872740
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Mathieu, Pierre; Remy, Elisabeth. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), no. 1A, 100--128. MR2040777
  • Pang, M. M. H. Heat kernels of graphs. J. London Math. Soc. (2) 47 (1993), no. 1, 50--64. MR1200977
  • Rassoul-Agha, Firas; Seppäläinen, Timo. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005), no. 3, 299--314. MR2198014
  • Saloff-Coste, L.; Zúñiga, J. Merging for time inhomogeneous finite Markov chains. I. Singular values and stability. Electron. J. Probab. 14 (2009), 1456--1494. MR2519527
  • Saloff-Coste, L.; Zúñiga, J. Merging for inhomogeneous finite Markov chains, Part II: Nash and log-Sobolev inequalities. Ann. Probab. 39 (2011), no. 3, 1161--1203. MR2789587
  • Sidoravicius, Vladas; Sznitman, Alain-Sol. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004), no. 2, 219--244. MR2063376

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.