The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Aimar, Hugo; Gómez, Ivana. Parabolic Besov regularity for the heat equation. Constr. Approx. 36 (2012), no. 1, 145--159. MR2926308
  • Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Philippe. The solution of the Kato square root problem for second order elliptic operators on ${\Bbb R}^n$. Ann. of Math. (2) 156 (2002), no. 2, 633--654. MR1933726
  • Auscher, Pascal; Tchamitchian, Philippe. Square roots of elliptic second order divergence operators on strongly Lipschitz domains: $L^p$ theory. Math. Ann. 320 (2001), no. 3, 577--623. MR1846778
  • Cioica, Petru A.; Dahlke, Stephan; Döhring, Nicolas; Friedrich, Ulrich; Lindner, Felix; Raasch, Thorsten; Ritter, Klaus; Schilling, René L. On the convergence analysis of Rothe's method. DFG-SPP 1324 Preprint 124, 2012; last accessed: September 11, 2013.
  • Cioica, Petru A.; Dahlke, Stephan; Döhring, Nicolas; Kinzel, Stefan; Lindner, Felix; Raasch, Thorsten; Ritter, Klaus; Schilling, René L. Adaptive wavelet methods for the stochastic Poisson equation. BIT 52 (2012), no. 3, 589--614. MR2965293
  • Cioica, Petru A.; Dahlke, Stephan; Kinzel, Stefan; Lindner, Felix; Raasch, Thorsten; Ritter, Klaus; Schilling, René L. Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains. Studia Math. 207 (2011), no. 3, 197--234. MR2875351
  • Cohen, Albert. Numerical analysis of wavelet methods, 1st ed., Studies in Mathematics and its Applications, vol. 32, Elsevier, Amsterdam, 2003. MR1990555
  • Cohen, Albert; Daubechies, Ingrid; Feauveau, Jean-Christophe. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992), no. 5, 485--560. MR1162365
  • Dahlke, Stephan. Besov regularity for second order elliptic boundary value problems with variable coefficients. Manuscripta Math. 95 (1998), no. 1, 59--77. MR1492369
  • Dahlke, Stephan. Besov regularity for elliptic boundary value problems in polygonal domains. Appl. Math. Lett. 12 (1999), no. 6, 31--36. MR1751404
  • Dahlke, Stephan. Besov regularity of edge singularities for the Poisson equation in polyhedral domains. Preconditioned robust iterative solution methods, PRISM '01 (Nijmegen). Numer. Linear Algebra Appl. 9 (2002), no. 6-7, 457--466. MR1934871
  • Dahlke, Stephan; DeVore, Ronald A. Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations 22 (1997), no. 1-2, 1--16. MR1434135
  • Dahlke, Stephan; Sickel, Winfried. Besov Regularity for the Poisson Equation in Smooth and Polyhedral Cones. Sobolev Spaces in Mathematics II, Applications to Partial Differential Equations (Vladimir~G. Maz'ya, ed.), International Mathematical Series 9, Springer, jointly published with Tamara Rozhkovskaya Publisher, Novosibirsk, 2008, pp. 123–145. MR2484624
  • Daubechies, Ingrid. Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. xx+357 pp. ISBN: 0-89871-274-2 MR1162107
  • DeVore, Ronald A. Nonlinear approximation. Acta numerica, 1998, 51--150, Acta Numer., 7, Cambridge Univ. Press, Cambridge, 1998. MR1689432
  • DeVore, Ronald A.; Sharpley, Robert C. Maximal functions measuring smoothness. Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115 pp. MR0727820
  • Dispa, Sophie. Intrinsic characterizations of Besov spaces on Lipschitz domains. Math. Nachr. 260 (2003), 21--33. MR2017700
  • Dong, Hongjie; Kim, Doyoon. $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients. Calc. Var. Partial Differential Equations 40 (2011), no. 3-4, 357--389. MR2764911
  • Engel, Klaus-Jochen; Nagel, Rainer. One-parameter semigroups for linear evolution equations. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. xxii+586 pp. ISBN: 0-387-98463-1 MR1721989
  • Hajłasz, Piotr. Change of variables formula under minimal assumptions. Colloq. Math. 64 (1993), no. 1, 93--101. MR1201446
  • Hansen, Markus. $n$-term approximation rates and Besov regularity for elliptic PDEs on polyhedral domains, DFG-SPP 1324 Preprint 131, 2012; last accessed: September 11, 2013.
  • Jerison, David; Kenig, Carlos E. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), no. 1, 161--219. MR1331981
  • Johnen, Hans; Scherer, Karl. On the equivalence of the $K$-functional and moduli of continuity and some applications. Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976), pp. 119--140. Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977. MR0487423
  • Jonsson, Alf; Wallin, Hans. Function spaces on subsets of ${\Bbb R}^n$. Mathematical Reports 2 (1984), no. 1, xiv+221 pp., Harwood Academic Publisher, Chur. MR0820626
  • Kalton, Nigel J.; Weis, Lutz. The $H^\infty$-calculus and sums of closed operators. Math. Ann. 321 (2001), no. 2, 319--345. MR1866491
  • Kim, Kyeong-Hun. On stochastic partial differential equations with variable coefficients in $C^1$ domains. Stochastic Process. Appl. 112 (2004), no. 2, 261--283. MR2073414
  • Kim, Kyeong-Hun. An $L_p$-theory of SPDEs on Lipschitz domains. Potential Anal. 29 (2008), no. 3, 303--326. MR2448286
  • Kim, Kyeong-Hun. Sobolev space theory of SPDEs with continuous or measurable leading coefficients. Stochastic Process. Appl. 119 (2009), no. 1, 16--44. MR2485018
  • Kim, Kyeong-Hun. A Weighted Sobolev Space Theory of Parabolic Stochastic PDEs on Non-smooth Domains, J. Theoret. Probab., published online: November 9, 2012. DOI: 10.1007/s10959-012-0459-7. arXiv:1109.4727
  • Kim, Kyeong-Hun; Krylov, Nicolai V. On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains. SIAM J. Math. Anal. 36 (2004), no. 2, 618--642. MR2111792
  • Krylov, Nicolai V. A $W^n_2$-theory of the Dirichlet problem for SPDEs in general smooth domains. Probab. Theory Related Fields 98 (1994), no. 3, 389--421. MR1262972
  • Krylov, Nicolai V. An analytic approach to SPDEs. Stochastic Partial Differential Equations: Six Perspectives (René A. Carmona and Boris L. Rozovskii, eds.), Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 185--242. MR1661766
  • Krylov, Nicolai V. Some Properties of Weighted Sobolev Spaces in ${\Bbb R}^d_+$. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 675--693. MR1760536
  • Krylov, Nicolai V. SPDEs in $L_Q((0,\tau]\!],L_P)$ spaces. Electron. J. Probab. 5 (2000), no. 13, 29 pp. MR1781025
  • Krylov, Nicolai V. Some Properties of Traces for Stochastic and Deterministic Parabolic Weighted Sobolev Spaces. J. Funct. Anal. 183 (2001), no. 1, 1--41. MR1837532
  • Krylov, Nicolai V.; Lototsky, Sergey V. A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM J. Math. Anal. 30 (1999), no. 2, 298--325. MR1664761
  • Krylov, Nicolai V.; Lototsky, Sergey V. A Sobolev Space Theory of SPDEs with Constant Coefficients in a Half Space, SIAM J. Math. Anal. 31 (1999), no. 1, 19--33. MR1720129
  • Kufner, Alois. Weighted Sobolev spaces. Teubner-Texte zur Mathematik, vol. 31. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. 151 pp. MR0664599
  • Kyriazis, George C. Wavelet coefficients measuring smoothness in $H_p({\Bbb R}^d)$. Appl. Comput. Harmon. Anal. 3 (1996), no. 2, 100--119. MR1385047
  • Lindner, Felix. Singular Behavior of the Solution to the Stochastic Heat Equation on a Polygonal Domain, Preprint, 2013. arXiv:1305.0975v2
  • Lototsky, Sergey~V. Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods Appl. Anal. 7 (2000), no. 1, 195--204. MR1742721
  • Maz'ya, Vladimir. Sobolev spaces. With applications to elliptic partial differential equations. Translated from the Russian by T.O. Shaposhnikova. Second, revised and augmented edition. Grundlehren der mathematischen Wissenschaften, 342. Springer, Heidelberg, 2011. xxviii+866 pp. MR2777530
  • Meyer, Yves. Wavelets and operators. Translated from the 1990 French original by D. H. Salinger. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge, 1992. xvi+224 pp. MR1228209
  • Pazy, Amnon. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, New York, 1983. MR710486
  • Rychkov, Vyacheslav S. On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. (2) 60 (1999), no. 1, 237--257. MR1721827
  • Triebel, Hans. Interpolation theory, function spaces, differential operators. Second edition. Johann Ambrosius Barth, Heidelberg, 1995. 532 pp. MR1328645
  • Triebel, Hans. Theory of function spaces III, Monographs in Mathematics, vol. 100, Birkhäuser, Basel-Boston-Berlin, 2006. MR2250142
  • van Neerven, Jan M.A.M. $γ$-radonifying operators -- a survey, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis (Andrew Hassel, Alan McIntosh, and Robert Taggart, eds.), Proceedings of the Centre for Mathematics and its Applications, vol. 44, 2010, pp. 1--62. MR2655391
  • van Neerven, Jan M.A.M.; Veraar, Mark C.; Weis, Lutz. Stochastic integration in UMD Banach spaces, Ann. Probab. 35 (2007), no. 4, 1438--1478. MR2330977
  • van Neerven, Jan M.A.M.; Veraar, Mark C.; Weis, Lutz. Maximal $L^p$-regularity for stochastic evolution equations. SIAM J. Math. Anal. 44 (2012), no. 3, 1372--1414. MR2982717
  • van Neerven, Jan M.A.M.; Veraar, Mark C.; Weis, Lutz. Stochastic maximal $L^p$-regularity. Ann. Probab. 40 (2012), no. 2, 788--812. MR2952092
  • Wood, Ian. Maximal $L^p$-regularity for the Laplacian on Lipschitz domains. Math. Z. 255 (2007), no. 4, 855--875. MR2274539

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.