The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Andjel, Enrique D.; Liggett, Thomas M.; Mountford, Thomas. Clustering in one-dimensional threshold voter models. Stochastic Process. Appl. 42 (1992), no. 1, 73--90. MR1172508
  • Belhaouari, S.; Mountford, T.; Sun, Rongfeng; Valle, G. Convergence results and sharp estimates for the voter model interfaces. Electron. J. Probab. 11 (2006), no. 30, 768--801 (electronic). MR2242663
  • Cox, J. T.; Durrett, R. Nonlinear voter models. Random walks, Brownian motion, and interacting particle systems, 189--201, Progr. Probab., 28, Birkhäuser Boston, Boston, MA, 1991. MR1146446
  • Cox, J. T.; Durrett, R. Hybrid zones and voter model interfaces. Bernoulli 1 (1995), no. 4, 343--370. MR1369166
  • Cox, J. Theodore; Perkins, Edwin A. Survival and coexistence in stochastic spatial Lotka-Volterra models. Probab. Theory Related Fields 139 (2007), no. 1-2, 89--142. MR2322693
  • Durrett, Rick; Neuhauser, Claudia. Coexistence results for some competition models. Ann. Appl. Probab. 7 (1997), no. 1, 10--45. MR1428748
  • Durrett, Rick. Mutual invadability implies coexistence in spatial models. Mem. Amer. Math. Soc. 156 (2002), no. 740, viii+118 pp. MR1879853
  • Griffeath, David. Additive and cancellative interacting particle systems. Lecture Notes in Mathematics, 724. Springer, Berlin, 1979. iv+108 pp. ISBN: 3-540-09508-X MR0538077
  • Handjani, Shirin J. The complete convergence theorem for coexistent threshold voter models. Ann. Probab. 27 (1999), no. 1, 226--245. MR1681118
  • Jansen, Sabine and Kurt, Noemi: On the notion(s) of duality for Markov processes. Preprint, 50 pages, arXiv:1210.7193v1
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231
  • Liggett, Thomas M. Coexistence in threshold voter models. Ann. Probab. 22 (1994), no. 2, 764--802. MR1288131
  • Neuhauser, Claudia; Pacala, Stephen W. An explicitly spatial version of the Lotka-Volterra model with interspecific competition. Ann. Appl. Probab. 9 (1999), no. 4, 1226--1259. MR1728561
  • Sturm, Anja; Swart, Jan. Voter models with heterozygosity selection. Ann. Appl. Probab. 18 (2008), no. 1, 59--99. MR2380891
  • Sturm, Anja; Swart, Jan M. Subcritical contact processes seen from a typical infected site. Preprint, 41 pages, arXiv:1110.4777v2
  • Swart, Jan M.; Vrbenský, Karel. Numerical analysis of the rebellious voter model. J. Stat. Phys. 140 (2010), no. 5, 873--899. MR2673338

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.