The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Baccelli, François; Błaszczyszyn, Bartłomiej. On a coverage process ranging from the Boolean model to the Poisson-Voronoi tessellation with applications to wireless communications. Adv. in Appl. Probab. 33 (2001), no. 2, 293--323. MR1842294
  • Balister, P. N.; Bollobás, B. Counting regions with bounded surface area. Comm. Math. Phys. 273 (2007), no. 2, 305--315. MR2318308
  • Hough, J. Ben; Krishnapur, Manjunath; Peres, Yuval; Virág, Bálint. Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009. x+154 pp. ISBN: 978-0-8218-4373-4 MR2552864
  • Benjamini, I ; Stauffer, A. Perturbing the hexagonal circle packing: a percolation perspective, arXiv:1104.0762, 2011.
  • Błaszczyszyn, Bartłomiej; Yogeshwaran, D. Directionally convex ordering of random measures, shot noise fields, and some applications to wireless communications. Adv. in Appl. Probab. 41 (2009), no. 3, 623--646. MR2571310
  • Błaszczyszyn, Bartłomiej; Yogeshwaran, D. Clustering comparison of point processes with applications to random geometric models, Stochastic Geometry, Spatial Statistics and Random Fields: Analysis, Modeling and Simulation of Complex Structures (V. Schmidt, ed.), to appear in Lecture Notes in Mathematics, Springer.
  • Błaszczyszyn, Bartłomiej; Yogeshwaran, D., Connectivity in sub-Poisson networks, Proc. of 48,th Annual Allerton Conference (University of Illinois at Urbana-Champaign, IL, USA), 2010, see also
  • Błaszczyszyn, Bartłomiej; Yogeshwaran, D., On comparison of clustering properties of point processes, Adv. Appl. Probab. 46 (2014), no. 1, to appear, see also
  • Bollobás, Béla; Riordan, Oliver. Clique percolation. Random Structures Algorithms 35 (2009), no. 3, 294--322. MR2548516
  • Burton, Robert; Waymire, Ed. Scaling limits for associated random measures. Ann. Probab. 13 (1985), no. 4, 1267--1278. MR0806223
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. I. Elementary theory and methods. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2003. xxii+469 pp. ISBN: 0-387-95541-0 MR1950431
  • Daley, D. J.; Vere-Jones, D., An introduction to the theory of point processes: Vol. ii, Springer, New York, 2007.
  • Dousse, Olivier; Baccelli, François; Thiran, Patrick. Impact of interferences on connectivity in ad-hoc networks, IEEE/ACM Trans. Networking 13 (2005), 425--543.
  • Dousse, Olivier; Franceschetti, Massimo; Macris, Nicolas; Meester, Ronald; Thiran, Patrick. Percolation in the signal to interference ratio graph. J. Appl. Probab. 43 (2006), no. 2, 552--562. MR2248583
  • Franceschetti, Massimo; Booth, Lorna; Cook, Matthew; Meester, Ronald; Bruck, Jehoshua. Continuum percolation with unreliable and spread-out connections. J. Stat. Phys. 118 (2005), no. 3-4, 721--734. MR2123652
  • Franceschetti, Massimo; Penrose, Mathew D.; Rosoman, Tom. Strict inequalities of critical values in continuum percolation. J. Stat. Phys. 142 (2011), no. 3, 460--486. MR2771041
  • Georgii, Hans-Otto; Yoo, Hyun Jae. Conditional intensity and Gibbsianness of determinantal point processes. J. Stat. Phys. 118 (2005), no. 1-2, 55--84. MR2122549
  • Ghosh, S; Krishnapur, M.; Peres, Y. Continuum percolation for gaussian zeroes and ginibre eigenvalues, arXiv:1211.2514, 2012.
  • Gilbert, E. N. Random plane networks. J. Soc. Indust. Appl. Math. 9 1961 533--543. MR0132566
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Jonasson, Johan. Optimization of shape in continuum percolation. Ann. Probab. 29 (2001), no. 2, 624--635. MR1849172
  • Kahle, Matthew. Random geometric complexes. Discrete Comput. Geom. 45 (2011), no. 3, 553--573. MR2770552
  • Kallenberg, Olav. Random measures. Third edition. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. 187 pp. ISBN: 0-12-394960-2 MR0818219
  • Kesten, H.; Sidoravicius, V.; Zhang, Y. Percolation of arbitrary words on the close-packed graph of $\Bbb Z^ 2$. Electron. J. Probab. 6 (2001), no. 4, 27 pp. (electronic). MR1825711
  • Lebowitz, J. L.; Mazel, A. E. Improved Peierls argument for high-dimensional Ising models. J. Statist. Phys. 90 (1998), no. 3-4, 1051--1059. MR1616958
  • Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71--95. MR1428500
  • Meester, Ronald; Roy, Rahul. Continuum percolation. Cambridge Tracts in Mathematics, 119. Cambridge University Press, Cambridge, 1996. x+238 pp. ISBN: 0-521-47504-X MR1409145
  • Müller, Alfred; Stoyan, Dietrich. Comparison methods for stochastic models and risks. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 2002. xii+330 pp. ISBN: 0-471-49446-1 MR1889865
  • Penrose, Mathew. Random geometric graphs. Oxford Studies in Probability, 5. Oxford University Press, Oxford, 2003. xiv+330 pp. ISBN: 0-19-850626-0 MR1986198
  • Roy, Rahul; Tanemura, Hideki. Critical intensities of Boolean models with different underlying convex shapes. Adv. in Appl. Probab. 34 (2002), no. 1, 48--57. MR1895330
  • D. Yogeshwaran, Stochastic geometric networks: connectivity and comparison, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France., 2010, Available at

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.