The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Bouchaud, J.-P.; Georges, A.; Koplik, J.; Provata, A. and Redner, S.: Superdiffusion in Random Velocity Fields. phPhys. Rev. letters 64 (21), (1990), 2503--2506.
  • Campanino, M.; Petritis, D. Random walks on randomly oriented lattices. Markov Process. Related Fields 9 (2003), no. 3, 391--412. MR2028220
  • Campanino, M. and Petritis, D.: Type transition of simple random walks on randomly directed regular lattices. ARXIV1204.5297.
  • Castell, Fabienne; Guillotin-Plantard, Nadine; Pène, Françoise; Schapira, Bruno. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011), no. 6, 2079--2118. MR2932665
  • Dombry, C.; Guillotin-Plantard, N. Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15 (2009), no. 1, 195--222. MR2546804
  • Gantert, Nina; König, Wolfgang; Shi, Zhan. Annealed deviations of random walk in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 1, 47--76. MR2288269
  • Guillotin-Plantard, N.; Le Ny, A. Transient random walks on 2D-oriented lattices. Teor. Veroyatn. Primen. 52 (2007), no. 4, 815--826; translation in Theory Probab. Appl. 52 (2008), no. 4, 699--711 MR2742878
  • Guillotin-Plantard, Nadine; Le Ny, Arnaud. A functional limit theorem for a 2D-random walk with dependent marginals. Electron. Commun. Probab. 13 (2008), 337--351. MR2415142
  • Heyde, C. C. On the asymptotic behavior of random walks on an anisotropic lattice. J. Statist. Phys. 27 (1982), no. 4, 721--730. MR0661686
  • Heyde, C. C.; Westcott, M.; Williams, E. R. The asymptotic behavior of a random walk on a dual-medium lattice. J. Statist. Phys. 28 (1982), no. 2, 375--380. MR0666516
  • Ibragimov, I. A.; Linnik, Yu. V. Independent and stationary sequences of random variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman. Wolters-Noordhoff Publishing, Groningen, 1971. 443 pp. MR0322926
  • Jain, Naresh C.; Pruitt, William E. Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 12 (1984), no. 1, 64--85. MR0723730
  • Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 5--25. MR0550121
  • de Loynes, B.: Random walk on a directed graph and Martin boundary, ARXIV1203.3306.
  • Lukacs, Eugene. Characteristic functions. Second edition, revised and enlarged. Hafner Publishing Co., New York, 1970. x+350 pp. MR0346874
  • Matheron, G. and de Marsily, G.: Is transport in porous media always diffusive? A counterexample. phWater Resources Res. 16 (5), (1980), 901--917.
  • Nagaev, S. V. On large deviations of a self-normalized sum. (Russian) Teor. Veroyatn. Primen. 49 (2004), no. 4, 794--802; translation in Theory Probab. Appl. 49 (2005), no. 4, 704--713 MR2142570
  • Pène, Françoise. Transient random walk in $\Bbb Z^ 2$ with stationary orientations. ESAIM Probab. Stat. 13 (2009), 417--436. MR2554964

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.