Uniqueness for an inviscid stochastic dyadic model on a tree

Luigi Amedeo Bianchi (Scuola Normale Superiore - Pisa)


In this paper we prove that the lack of uniqueness for solutions of the tree dyadic model of turbulence is overcome with the introduction of a suitable noise. The uniqueness is a weak probabilistic uniqueness for all $l^2$-initial conditions and is proven using a technique relying on the properties of the   $q$-matrix associated to a continuous time Markov chain.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-12

Publication Date: January 31, 2013

DOI: 10.1214/ECP.v18-2382


  • Anderson, William J. Continuous-time Markov chains. An applications-oriented approach. Springer Series in Statistics: Probability and its Applications. Springer-Verlag, New York, 1991. xii+355 pp. ISBN: 0-387-97369-9 MR1118840
  • Attanasio, Stefano; Flandoli, Franco. Zero-noise solutions of linear transport equations without uniqueness: an example. C. R. Math. Acad. Sci. Paris 347 (2009), no. 13-14, 753--756. MR2543977
  • Barbato, D.; Barsanti, M.; Bessaih, H.; Flandoli, F. Some rigorous results on a stochastic GOY model. J. Stat. Phys. 125 (2006), no. 3, 677--716. MR2281460
  • Barbato, David; Bianchi, Luigi Amedeo; Flandoli, Franco; Morandin, Francesco. A dyadic model on a tree. (2012) To appear on Journal of Mathematical Physics
  • Barbato, D.; Flandoli, F.; Morandin, F. Uniqueness for a stochastic inviscid dyadic model. Proc. Amer. Math. Soc. 138 (2010), no. 7, 2607--2617. MR2607891
  • Barbato, David; Flandoli, Franco; Morandin, Francesco. Anomalous dissipation in a stochastic inviscid dyadic model. Ann. Appl. Probab. 21 (2011), no. 6, 2424--2446. MR2895420
  • Barbato, D.; Flandoli, F.; Morandin, F. Energy dissipation and self-similar solutions for an unforced inviscid dyadic model. Trans. Amer. Math. Soc. 363 (2011), no. 4, 1925--1946. MR2746670
  • Barbato, David; Morandin, Francesco. Stochastic inviscid shell models: well-posedness and anomalous dissipation. (2012) Preprint.
  • Bernardin, Cédric. Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise. Stochastic Process. Appl. 117 (2007), no. 4, 487--513. MR2305383
  • Bessaih, Hakima; Millet, Annie. Large deviation principle and inviscid shell models. Electron. J. Probab. 14 (2009), no. 89, 2551--2579. MR2570011
  • Brzeźniak, Z.; Flandoli, F.; Neklyudov, M.; Zegarliński, B. Conservative interacting particles system with anomalous rate of ergodicity. J. Stat. Phys. 144 (2011), no. 6, 1171--1185. MR2841920
  • Constantin, Peter; Levant, Boris; Titi, Edriss S. Analytic study of shell models of turbulence. Phys. D 219 (2006), no. 2, 120--141. MR2251486
  • Ferrario, Benedetta. Absolute continuity of laws for semilinear stochastic equations with additive noise. Commun. Stoch. Anal. 2 (2008), no. 2, 209--227. MR2446690
  • Flandoli, Franco. Random perturbation of PDEs and fluid dynamic models. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2015. Springer, Heidelberg, 2011. x+176 pp. ISBN: 978-3-642-18230-3 MR2796837
  • Katz, Nets Hawk; Pavlović, Nataša. Finite time blow-up for a dyadic model of the Euler equations. Trans. Amer. Math. Soc. 357 (2005), no. 2, 695--708 (electronic). MR2095627
  • Manna, Utpal; Mohan, Manil T. Shell model of turbulence perturbed by Lévy noise. NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 6, 615--648. MR2861257
  • Da Prato, Giuseppe; Flandoli, Franco; Priola, Enrico; Röckner, Michael . Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. (2011) To appear on Annals of Probability.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.