The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Bally, Vlad; Pardoux, Etienne. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9 (1998), no. 1, 27--64. MR1644120
  • Carmona, René; Nualart, David. Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79 (1988), no. 4, 469--508. MR0966173
  • Conus, Daniel; Dalang, Robert C. The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13 (2008), no. 22, 629--670. MR2399293
  • Dalang, Robert C.; Frangos, N. E. The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998), no. 1, 187--212. MR1617046
  • Dalang, Robert C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999), no. 6, 29 pp. (electronic). MR1684157
  • Dalang, Robert C.; Quer-Sardanyons, Lluís. Stochastic integrals for spde's: a comparison. Expo. Math. 29 (2011), no. 1, 67--109. MR2785545
  • Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions. phCambridge University Press, Cambridge, 2008.
  • Kusuoka, Shigeo; Stroock, Daniel. Applications of the Malliavin calculus. I. Stochastic analysis (Katata/Kyoto, 1982), 271--306, North-Holland Math. Library, 32, North-Holland, Amsterdam, 1984. MR0780762
  • Lax, Peter D. Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002. xx+580 pp. ISBN: 0-471-55604-1 MR1892228
  • Márquez-Carreras, D.; Mellouk, M.; Sarrà, M. On stochastic partial differential equations with spatially correlated noise: smoothness of the law. Stochastic Process. Appl. 93 (2001), no. 2, 269--284. MR1828775
  • Millet, Annie; Sanz-Solé, Marta. A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27 (1999), no. 2, 803--844. MR1698971
  • Nualart, D.; Sanz, M. Malliavin calculus for two-parameter Wiener functionals. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 4, 573--590. MR0807338
  • Nualart, D.; Sanz, M. Stochastic differential equations on the plane: smoothness of the solution. J. Multivariate Anal. 31 (1989), no. 1, 1--29. MR1022349
  • Nualart, David. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
  • Nualart, David; Quer-Sardanyons, Lluís. Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27 (2007), no. 3, 281--299. MR2336301
  • Pardoux, Étienne; Zhang, Tu Sheng. Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal. 112 (1993), no. 2, 447--458. MR1213146
  • Peszat, Szymon. The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2 (2002), no. 3, 383--394. MR1930613
  • Quer-Sardanyons, L.; Sanz-Solé, M. Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal. 206 (2004), no. 1, 1--32. MR2024344
  • Quer-Sardanyons, Lluís; Sanz-Solé, Marta. A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli 10 (2004), no. 1, 165--186. MR2044597
  • Sanz-Solé, Marta. Malliavin calculus. With applications to stochastic partial differential equations. Fundamental Sciences. EPFL Press, Lausanne; distributed by CRC Press, Boca Raton, FL, 2005. viii+162 pp. ISBN: 2-940222-06-1; 0-8493-4030-6 MR2167213
  • Sanz-Solé, Marta. Properties of the density for a three-dimensional stochastic wave equation. J. Funct. Anal. 255 (2008), no. 1, 255--281. MR2417817
  • Schwartz, L.: Théorie des Distributions. phHermann, 2nd edition, Paris, 2010.
  • Trèves, François. Topological vector spaces, distributions and kernels. Unabridged republication of the 1967 original. Dover Publications, Inc., Mineola, NY, 2006. xvi+565 pp. ISBN: 0-486-45352-9 MR2296978
  • Walsh, John B. An introduction to stochastic partial differential equations. École d'été de probabilités de Saint-Flour, XIV—1984, 265--439, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876085

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.