Perturbation analysis of the van den Berg Kesten inequality for determinantal probability measures

Franz Merkl (Ludwig-Maximilians-Universitaet Muenchen)
Silke W.W. Rolles (Technische Universitaet Muenchen)


This paper describes a second order perturbation analysis of the BK property in the space of Hermitean determinantal probability measures around the subspace of product measures, showing that the second order Taylor approximation of the BK inequality holds for increasing events.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-20

Publication Date: October 24, 2013

DOI: 10.1214/EJP.v18-2339


  • Borgs, C.; Chayes, J. T.; Randall, D. The van den Berg-Kesten-Reimer inequality: a review. Perplexing problems in probability, 159-173, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999. MR1703130
  • Grimmett, G. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Jonasson, J. The BK inequality for pivotal sampling a.k.a. the Srinivasan sampling process, Electron. Comm. Probab. 18 (2013), no. 35, 1-6 (electronic). DOI:10.1214/ECP.v18-2045
  • Lyons, R. Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. No. 98 (2003), 167-212. MR2031202
  • Reimer, D. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput. 9 (2000), no. 1, 27-32. MR1751301
  • van den Berg, J.; Fiebig, U. On a combinatorial conjecture concerning disjoint occurrences of events. Ann. Probab. 15 (1987), no. 1, 354-374. MR0877608
  • van den Berg, J.; Gandolfi, A. BK-type inequalities and generalized random-cluster representations. Probab. Theory Related Fields 157 (2013), no. 1-2, 157-181. MR3101843
  • van den Berg, J.; Jonasson, J. A BK inequality for randomly drawn subsets of fixed size. Probab. Theory Related Fields 154 (2012), no. 3-4, 835-844. MR3000563
  • van den Berg, J.; Kesten, H. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985), no. 3, 556-569. MR0799280

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.