The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Barbour, A. D.; Reinert, G. The shortest distance in random multi-type intersection graphs. Random Structures Algorithms 39 (2011), no. 2, 179--209. MR2850268
  • Barrat, A.; Weigt, M. On the properties of small-world networks, The European Physical Journal B~ 13 (2000), 547--560.
  • Behrisch, Michael. Component evolution in random intersection graphs. Electron. J. Combin. 14 (2007), no. 1, Research Paper 17, 12 MR2285821
  • Blackburn, Simon R.; Gerke, Stefanie. Connectivity of the uniform random intersection graph. Discrete Math. 309 (2009), no. 16, 5130--5140. MR2548914
  • Bloznelis, M. Degree distribution of a typical vertex in a general random intersection graph. Lith. Math. J. 48 (2008), no. 1, 38--45. MR2398169
  • Bloznelis, M. Degree and clustering coefficient in sparse random intersection graphs, to appear in Annals of Applied Probability.
  • Britton, Tom; Deijfen, Maria; Lagerås, Andreas N.; Lindholm, Mathias. Epidemics on random graphs with tunable clustering. J. Appl. Probab. 45 (2008), no. 3, 743--756. MR2455182
  • Deijfen, Maria; Kets, Willemien. Random intersection graphs with tunable degree distribution and clustering. Probab. Engrg. Inform. Sci. 23 (2009), no. 4, 661--674. MR2535025
  • Eschenauer, L.; Gligor, V. D. A key-management scheme for distributed sensor networks, in: Proceedings of the 9th ACM Conference on Computer and Communications Security (2002), 41--47.
  • Godehardt, Erhard; Jaworski, Jerzy. Two models of random intersection graphs and their applications. Comb01—Euroconference on Combinatorics, Graph Theory and Applications, 4 pp. (electronic), Electron. Notes Discrete Math., 10, Elsevier, Amsterdam, 2001. MR2154493
  • Godehardt, E.; Jaworski, J. Two models of random intersection graphs for classification. Exploratory data analysis in empirical research, 67--81, Stud. Classification Data Anal. Knowledge Organ., Springer, Berlin, 2003. MR2074223
  • Godehardt, E.; Jaworski, J.; Rybarczyk, K. Clustering coefficients of random intersection graphs, in: Studies in Classification, Data Analysis and Knowledge Organization, Springer, Berlin--Heidelberg--New York, 2012, 243--253.
  • Guillaume, Jean-Loup; Latapy, Matthieu. Bipartite structure of all complex networks. Inform. Process. Lett. 90 (2004), no. 5, 215--221. MR2054656
  • Jaworski, Jerzy; Stark, Dudley. The vertex degree distribution of passive random intersection graph models. Combin. Probab. Comput. 17 (2008), no. 4, 549--558. MR2433940
  • Karoński, Michał; Scheinerman, Edward R.; Singer-Cohen, Karen B. On random intersection graphs: the subgraph problem. Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), no. 1-2, 131--159. MR1684626
  • Sang Hoon Lee, Pan-Jun Kim and Hawoong Jeong, Statistical properties of sampled networks, Physical Review E~ 73 (2006), 016102.
  • Newman, M. E. J.; Strogatz S. H.; Watts, D. J. Random graphs with arbitrary degree distributions and their applications, Physical Review E~ 64 (2001), 026118.
  • Newman, M. E. J. Assortative Mixing in Networks, Physical Review Letters~ 89 (2002), 208701.
  • Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E (3) 67 (2003), no. 2, 026126, 13 MR1975193
  • Newman, M. E. J. Properties of highly clustered networks, Physical Review E~ 68 (2003), 026121.
  • Newman, M. E. J.; Watts, D. J.; Strogatz, S. H. Random graph models of social networks, Proc. Natl. Acad. Sci. USA~ 99 (Suppl. 1) (2002), 2566--2572.
  • Nikoletseas, S.; Raptopoulos, C.; Spirakis, P. G. On the independence number and Hamiltonicity of uniform random intersection graphs. Theoret. Comput. Sci. 412 (2011), no. 48, 6750--6760. MR2885093
  • Pastor-Satorras, R.; Vázquez, A.; Vespignani, A. Dynamical and correlation properties of the internet, Phys. Rev. Lett.~ 87 (2001), 258701.
  • Rybarczyk, Katarzyna. Diameter, connectivity, and phase transition of the uniform random intersection graph. Discrete Math. 311 (2011), no. 17, 1998--2019. MR2818878
  • Stark, Dudley. The vertex degree distribution of random intersection graphs. Random Structures Algorithms 24 (2004), no. 3, 249--258. MR2068868
  • Steele, J. Michael. Le Cam's inequality and Poisson approximations. Amer. Math. Monthly 101 (1994), no. 1, 48--54. MR1252705
  • Strogatz, S. H.; Watts, D. J. Collective dynamics of small-world networks, Nature~ 393 (1998), 440--442.
  • Yagan, O.; Makowski, A. M. Zero-one laws for connectivity in random key graphs, IEEE Transactions on Information Theory~ 58 (2012), 2983 - 2999.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.