The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Romain Abraham, Jean-Francois Delmas, and Patrick Hoscheit. Exit times for an increasing Lévy tree-valued process, 2012. arXiv:1202.5463.
  • Romain Abraham, Jean-Francois Delmas, and Patrick Hoscheit. A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces, 2012. arXiv:1202.5464.
  • Aldous, David. The continuum random tree. III. Ann. Probab. 21 (1993), no. 1, 248--289. MR1207226
  • Beer, Gerald. Topologies on closed and closed convex sets. Mathematics and its Applications, 268. Kluwer Academic Publishers Group, Dordrecht, 1993. xii+340 pp. ISBN: 0-7923-2531-1 MR1269778
  • Beer, Gerald. A note on epi-convergence. Canad. Math. Bull. 37 (1994), no. 3, 294--300. MR1289763
  • Bogachev, V. I. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007. Vol. I: xviii+500 pp., Vol. II: xiv+575 pp. ISBN: 978-3-540-34513-8; 3-540-34513-2 MR2267655
  • Cohn, Donald L. Measure theory. Birkhäuser, Boston, Mass., 1980. ix+373 pp. ISBN: 3-7643-3003-1 MR0578344
  • Depperschmidt, Andrej; Greven, Andreas; Pfaffelhuber, Peter. Marked metric measure spaces. Electron. Commun. Probab. 16 (2011), 174--188. MR2783338
  • Andrej Depperschmidt, Andreas Greven, and Peter Pfaffelhuber. Tree-valued Fleming-Viot dynamics with mutation and selection. Annals of Applied Prob., 22(6):2560--2615, 2012.
  • Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque No. 281 (2002), vi+147 pp. MR1954248
  • Dress, Andreas; Moulton, Vincent; Terhalle, Werner. $T$-theory: an overview. Discrete metric spaces (Bielefeld, 1994). European J. Combin. 17 (1996), no. 2-3, 161--175. MR1379369
  • Duquesne, Thomas. A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003), no. 2, 996--1027. MR1964956
  • Thomas Duquesne. The coding of compact real trees by real valued functions, 2006. arXiv:0604106.
  • Evans, Steven N. Probability and real trees. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005. Lecture Notes in Mathematics, 1920. Springer, Berlin, 2008. xii+193 pp. ISBN: 978-3-540-74797-0 MR2351587
  • Evans, Steven N.; Winter, Anita. Subtree prune and regraft: a reversible real tree-valued Markov process. Ann. Probab. 34 (2006), no. 3, 918--961. MR2243874
  • Fukaya, Kenji. Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (1987), no. 3, 517--547. MR0874035
  • Greven, Andreas; Pfaffelhuber, Peter; Winter, Anita. Convergence in distribution of random metric measure spaces ($\Lambda$-coalescent measure trees). Probab. Theory Related Fields 145 (2009), no. 1-2, 285--322. MR2520129
  • Andreas Greven, Peter Pfaffelhuber, and Anita Winter. Tree-valued resampling dynamics. Martingale problems and applications. Prob. Theo. Rel. Fields, in press, 2011.
  • Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original [MR0682063 (85e:53051)]. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhäuser Boston, Inc., Boston, MA, 1999. xx+585 pp. ISBN: 0-8176-3898-9 MR1699320
  • Hoffmann-Jørgensen, J. Probability in Banach space. École d'Été de Probabilités de Saint-Flour, VI-1976, pp. 1--186. Lecture Notes in Math., Vol. 598, Springer-Verlag, Berlin, 1977. MR0461610
  • LeCam, Lucien. Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statist. 2 (1957), 207--236. MR0086117
  • Le Gall, Jean-François. The uniform random tree in a Brownian excursion. Probab. Theory Related Fields 96 (1993), no. 3, 369--383. MR1231930
  • Dal Maso, Gianni. An introduction to $\Gamma$-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993. xiv+340 pp. ISBN: 0-8176-3679-X MR1201152
  • Sturm, Karl-Theodor. On the geometry of metric measure spaces. I. Acta Math. 196 (2006), no. 1, 65--131. MR2237206

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.