The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Ayache, Antoine; Linde, Werner. Series representations of fractional Gaussian processes by trigonometric and Haar systems. Electron. J. Probab. 14 (2009), no. 94, 2691--2719. MR2576756
  • Buldygin, V. V.; Kozachenko, Yu. V. Metric characterization of random variables and random processes. Translated from the 1998 Russian original by V. Zaiats. Translations of Mathematical Monographs, 188. American Mathematical Society, Providence, RI, 2000. xii+257 pp. ISBN: 0-8218-0533-9 MR1743716
  • Cambanis, Stamatis; Masry, Elias. Wavelet approximation of deterministic and random signals: convergence properties and rates. IEEE Trans. Inform. Theory 40 (1994), no. 4, 1013--1029. MR1301417
  • Chui, Charles K. An introduction to wavelets. Wavelet Analysis and its Applications, 1. Academic Press, Inc., Boston, MA, 1992. x+264 pp. ISBN: 0-12-174584-8 MR1150048
  • Daubechies, Ingrid. Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. xx+357 pp. ISBN: 0-89871-274-2 MR1162107
  • Delaigle, A.; Hall, P. Methodology and theory for partial least squares applied to functional data, Ann. Statist. 40(1) (2012) 322-352. MR3014309
  • Didier, Gustavo; Pipiras, Vladas. Gaussian stationary processes: adaptive wavelet decompositions, discrete approximations, and their convergence. J. Fourier Anal. Appl. 14 (2008), no. 2, 203--234. MR2383723
  • Dzhaparidze, Kacha; van Zanten, Harry. A series expansion of fractional Brownian motion. Probab. Theory Related Fields 130 (2004), no. 1, 39--55. MR2092872
  • Eggermont, P.P.B.; LaRiccia, V.N. Uniform error bounds for smoothing splines. High Dimensional Probability, 220-237, IMS Lecture Notes Monogr. Ser., 51, Inst. Math. Statist., Beachwood, OH, 2006. MR2387772
  • Fan, J.; Hall, P.; Martin, M.; Patil, P. Adaptation to high spatial inhomogeneity using wavelet methods, Statist. Sinica. 9(1) (1999) 85-102. MR1678882
  • Härdle, Wolfgang; Kerkyacharian, Gerard; Picard, Dominique; Tsybakov, Alexander. Wavelets, approximation, and statistical applications. Lecture Notes in Statistics, 129. Springer-Verlag, New York, 1998. xviii+265 pp. ISBN: 0-387-98453-4 MR1618204
  • Hernandez, E.; Weiss, G. A First Course on Wavelets, CRC press Inc., Boca Ratan FL, 1996. MR1408902
  • Iglói, E. A rate-optimal trigonometric series expansion of the fractional Brownian motion. Electron. J. Probab. 10 (2005), no. 41, 1381--1397 (electronic). MR2183006
  • Istas, Jacques. Wavelet coefficients of a Gaussian process and applications. Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 4, 537--556. MR1193084
  • Kozachenko, Yuriy; Olenko, Andriy; Polosmak, Olga. Uniform convergence of wavelet expansions of Gaussian random processes. Stoch. Anal. Appl. 29 (2011), no. 2, 169--184. MR2774235
  • Kozachenko, Yu.V.; Olenko, A.; Polosmak, O.V. Convergence rate of wavelet expansions of Gaussian random processes, will appear in Comm. Statist. Theory Methods. (2013)
  • Kozachenko, Yu.V.; Olenko, A.; Polosmak, O.V. Convergence in L_p([0,T]) of wavelet expansions of arphi-sub-Gaussian random processes, will appear in Methodol. Comput. Appl. Probab. (2014) ARXIV1307.1859
  • Kozachenko, Yu. V.; Polosmak, O. V. Uniform convergence in probability of wavelet expansions of random processes from $L_ 2(\Omega)$. Random Oper. Stoch. Equ. 16 (2008), no. 4, 325--355. MR2494935
  • Kozachenko, Yu. V.; Slivka, G. Ī. Justification of the Fourier method for a hyperbolic equation with random initial conditions. (Ukrainian) Teor. Ĭmovīr. Mat. Stat. No. 69 (2003), 63--78; translation in Theory Probab. Math. Statist. No. 69 (2004), 67--83 (2005) MR2110906
  • Kurbanmuradov, O.; Sabelfeld, K. Convergence of Fourier-wavelet models for Gaussian random processes. SIAM J. Numer. Anal. 46 (2008), no. 6, 3084--3112. MR2439503
  • Meyer, Yves; Sellan, Fabrice; Taqqu, Murad S. Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5 (1999), no. 5, 465--494. MR1755100
  • wmtsa: Wavelet Methods for Time Series Analysis, available online from (accessed 15 July 2013)
  • Phillips, P.C.B.; Liao, Z. Series estimation of stochastic processes: recent developments and econometric applications, to appear in A. Ullah, J. Racine and L. Su (eds.) Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics, Oxford University Press, Oxford, 2013.
  • J. Zhang, G. Waiter, A wavelet-based KL-like expansion for wide-sense stationary random processes, IEEE Trans. Signal Proc. 42(7) (1994) 1737-1745.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.