The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in LOGSPACE. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 132--140, 1987.
  • Alon, Noga; Feige, Uriel; Wigderson, Avi; Zuckerman, David. Derandomized graph products. Comput. Complexity 5 (1995), no. 1, 60--75. MR1319493
  • Alon, Noga; Spencer, Joel H. The probabilistic method. Second edition. With an appendix on the life and work of Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, 2000. xviii+301 pp. ISBN: 0-471-37046-0 MR1885388
  • Benjamini, Itai; Kalai, Gil; Schramm, Oded. Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. No. 90 (1999), 5--43 (2001). MR1813223 arXiv:math.PR/9811157
  • Carne, Thomas Keith. A transmutation formula for Markov chains. Bull. Sci. Math. (2) 109 (1985), no. 4, 399--405. MR0837740
  • Garban, Christophe; Pete, Gábor; Schramm, Oded. The Fourier spectrum of critical percolation. Acta Math. 205 (2010), no. 1, 19--104. MR2736153 arXiv:0803.3750
  • C. Garban, G. Pete, and O. Schramm. Pivotal, cluster and interface measures for critical planar percolation. Preprint, arXiv:1008.1378
  • C. Garban, G. Pete, and O. Schramm. The scaling limits of dynamical and near-critical percolation. In preparation.
  • C. Garban and J. E. Steif. Lectures on noise sensitivity and percolation. In: Probability and statistical physics in two and more dimensions (D. Ellwood, C. Newman, V. Sidoravicius and W. Werner, ed.). Proceedings of the Clay Mathematical Institute Summer School and XIV Brazilian School of Probability (Buzios, Brazil), Clay Mathematics Proceedings 15 (2012), 49--154. arXiv:1102.5761
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Häggström, Olle; Peres, Yuval; Steif, Jeffrey E. Dynamical percolation. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 4, 497--528. MR1465800
  • A. Hammond, G. Pete, and O. Schramm. Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster. Preprint, arXiv:1208.3826
  • Hoory, Shlomo; Linial, Nathan; Wigderson, Avi. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439--561 (electronic). MR2247919
  • Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. Markov chains and mixing times. With a chapter by James G. Propp and David B. Wilson. American Mathematical Society, Providence, RI, 2009. xviii+371 pp. ISBN: 978-0-8218-4739-8 MR2466937
  • R. Lyons, with Y. Peres. Probability on trees and networks. Book in preparation, present version is at
  • Mossel, Elchanan; O'Donnell, Ryan; Regev, Oded; Steif, Jeffrey E.; Sudakov, Benny. Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality. Israel J. Math. 154 (2006), 299--336. MR2254545 arXiv:math.PR/0410560
  • Schramm, Oded; Smirnov, Stanislav. On the scaling limits of planar percolation. With an appendix by Christophe Garban. Ann. Probab. 39 (2011), no. 5, 1768--1814. MR2884873 arXiv:1101.5820
  • Schramm, Oded; Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2) 171 (2010), no. 2, 619--672. MR2630053 arXiv:math.PR/0504586
  • Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (2001), no. 5-6, 729--744. MR1879816 arXiv:math.PR/0109120
  • Steif, Jeffrey E. A survey of dynamical percolation. Fractal geometry and stochastics IV, 145--174, Progr. Probab., 61, Birkhäuser Verlag, Basel, 2009. MR2762676 arXiv:0901.4760
  • Varopoulos, Nicholas Th. Long range estimates for Markov chains. Bull. Sci. Math. (2) 109 (1985), no. 3, 225--252. MR0822826
  • Werner, Wendelin. Lectures on two-dimensional critical percolation. Statistical mechanics, 297--360, IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009. MR2523462 arXiv:0710.0856

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.