A phase transition for the limiting spectral density of random matrices

Olga Friesen (Westfälische Wilhelms-Universität Münster)
Matthias Löwe (Westfälische Wilhelms-Universität Münster)


We analyze the spectral distribution of symmetric random matrices with correlated entries. While we assume that the diagonals of these random matrices are stochastically independent, the elements of the diagonals are taken to be correlated. Depending on the strength of correlation, the limiting spectral distribution is either the famous semicircle distribution, the distribution derived for Toeplitz matrices by Bryc, Dembo and Jiang (2006), or the free convolution of the two distributions.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-17

Publication Date: January 29, 2013

DOI: 10.1214/EJP.v18-2118


  • Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp. ISBN: 978-0-521-19452-5 MR2760897
  • Arnold, L. On Wigner's semicircle law for the eigenvalues of random matrices. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 191--198. MR0348820
  • Biane, Philippe. On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46 (1997), no. 3, 705--718. MR1488333
  • Bożejko, Marek; Speicher, Roland. Interpolations between bosonic and fermionic relations given by generalized Brownian motions. Math. Z. 222 (1996), no. 1, 135--159. MR1388006
  • Bryc, Włodzimierz; Dembo, Amir; Jiang, Tiefeng. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), no. 1, 1--38. MR2206341
  • Chatterjee, Sourav. A generalization of the Lindeberg principle. Ann. Probab. 34 (2006), no. 6, 2061--2076. MR2294976
  • Ellis, Richard S.; Newman, Charles M. Fluctuationes in Curie-Weiss exemplis. Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), pp. 313--324, Lecture Notes in Phys., 80, Springer, Berlin-New York, 1978. MR0518443
  • Ellis, Richard S. Entropy, large deviations, and statistical mechanics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 271. Springer-Verlag, New York, 1985. xiv+364 pp. ISBN: 0-387-96052-X MR0793553
  • Erdős, László. Universality of Wigner random matrices: a survey of recent results. (Russian) Uspekhi Mat. Nauk 66 (2011), no. 3(399), 67--198; translation in Russian Math. Surveys 66 (2011), no. 3, 507--626 MR2859190
  • Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), no. 2, 641--655. MR2481753
  • Olga Friesen and Matthias Löwe. The semicircle law for matrices with independent diagonals, Preprint, to appear in J. Theoret. Probab. (2011).
  • Götze, F.; Tikhomirov, A. N. Limit theorems for spectra of random matrices with martingale structure. Teor. Veroyatn. Primen. 51 (2006), no. 1, 171--192; translation in Theory Probab. Appl. 51 (2007), no. 1, 42--64 MR2324173
  • Guionnet, Alice. Large random matrices: lectures on macroscopic asymptotics. Lectures from the 36th Probability Summer School held in Saint-Flour, 2006. Lecture Notes in Mathematics, 1957. Springer-Verlag, Berlin, 2009. xii+294 pp. ISBN: 978-3-540-69896-8 MR2498298
  • Khorunzhy, A. M.; Pastur, L. A. On the eigenvalue distribution of the deformed Wigner ensemble of random matrices. Spectral operator theory and related topics, 97--127, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI, 1994. MR1298444
  • Nica, Alexandru; Speicher, Roland. Lectures on the combinatorics of free probability. London Mathematical Society Lecture Note Series, 335. Cambridge University Press, Cambridge, 2006. xvi+417 pp. ISBN: 978-0-521-85852-6; 0-521-85852-6 MR2266879
  • Schenker, Jeffrey H.; Schulz-Baldes, Hermann. Semicircle law and freeness for random matrices with symmetries or correlations. Math. Res. Lett. 12 (2005), no. 4, 531--542. MR2155229
  • Sen, Arnab; Virág, Bálint. Absolute continuity of the limiting eigenvalue distribution of the random Toeplitz matrix. Electron. Commun. Probab. 16 (2011), 706--711. MR2861434
  • Tao, Terence; Vu, Van. Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011), no. 1, 127--204. MR2784665
  • Wigner, Eugene P. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 1958 325--327. MR0095527
  • John Wishart. The generalized product moment distribution in samples from a normal multivariate population, Biometrika 20 (1928), 32--52.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.