Entropy decay for interacting systems via the Bochner-Bakry-Émery approach

Paolo Dai Pra (Università di Padova)
Gustavo Posta (Politecnico di Milano)


We obtain estimates on the exponential rate of decay of the relative entropy from equilibrium for Markov processes with a non-local infinitesimal generator. We adapt some of the ideas coming from the Bakry-Emery approach to this setting. In particular, we obtain volume- independent lower bounds for the Glauber dynamics of interacting point particles and for various classes of hardcore models.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-21

Publication Date: May 4, 2013

DOI: 10.1214/EJP.v18-2041


  • Bakry, D.; Émery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177--206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. MR0889476
  • Bertini, Lorenzo; Cancrini, Nicoletta; Cesi, Filippo. The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 91--108. MR1899231
  • Boudou, Anne-Severine; Caputo, Pietro; Dai Pra, Paolo; Posta, Gustavo. Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 (2006), no. 1, 222--258. MR2200172
  • Caputo, Pietro; Dai Pra, Paolo; Posta, Gustavo. Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 3, 734--753. MR2548501
  • Caputo, Pietro; Posta, Gustavo. Entropy dissipation estimates in a zero-range dynamics. Probab. Theory Related Fields 139 (2007), no. 1-2, 65--87. MR2322692
  • M. Disertori, A. Giuliani; phThe nematic phase of a system of long hard rods. Comm. Math. Phys. (to appear). ARXIV1112.5564v2.
  • Diaconis, P.; Saloff-Coste, L. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 (1996), no. 3, 695--750. MR1410112
  • Erbar, Matthias; Maas, Jan. Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206 (2012), no. 3, 997--1038. MR2989449
  • Grunewald, Natalie; Otto, Felix; Villani, Cédric; Westdickenberg, Maria G. A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 2, 302--351. MR2521405
  • Kelly, F. P. Loss networks. Ann. Appl. Probab. 1 (1991), no. 3, 319--378. MR1111523
  • Y. Kondratiev, K. Tobias, N. Ohlerich; phSpectral gap for Glauber type dynamics for a special class of potentials. ARXIV1103.5079v1
  • Ledoux, M. Logarithmic Sobolev inequalities for unbounded spin systems revisited. Séminaire de Probabilités, XXXV, 167--194, Lecture Notes in Math., 1755, Springer, Berlin, 2001. MR1837286
  • Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. Markov chains and mixing times. With a chapter by James G. Propp and David B. Wilson. American Mathematical Society, Providence, RI, 2009. xviii+371 pp. ISBN: 978-0-8218-4739-8 MR2466937
  • Li, Xiang-Dong. Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature. Math. Ann. 353 (2012), no. 2, 403--437. MR2915542
  • Luby, Michael; Vigoda, Eric. Fast convergence of the Glauber dynamics for sampling independent sets. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997). Random Structures Algorithms 15 (1999), no. 3-4, 229--241. MR1716763
  • Ma, Yutao; Wang, Ran; Wu, Liming. Transportation-information inequalities for continuum Gibbs measures. Electron. Commun. Probab. 16 (2011), 600--613. MR2846653
  • Maas, Jan. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011), no. 8, 2250--2292. MR2824578
  • Vigoda, Eric. A note on the Glauber dynamics for sampling independent sets. Electron. J. Combin. 8 (2001), no. 1, Research Paper 8, 8 pp. (electronic). MR1814515
  • Wu, Liming. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118 (2000), no. 3, 427--438. MR1800540
  • Wu, Liming. Estimate of spectral gap for continuous gas. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 387--409. MR2070332

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.