The compact support property for the $\Lambda$-Fleming-Viot process with underlying Brownian motion

Huili Liu (Concordia University)
Xiaowen Zhou (Concordia University)


Using the lookdown construction of Donnelly and Kurtz we prove that, at any fixed positive time, the  $\Lambda$-Fleming-Viot process with underlying Brownian motion has a compact support provided that the corresponding $\Lambda$-coalescent comes down from infinity not too slowly. We also find both upper bound and lower bound on the Hausdorff dimension for the support.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-20

Publication Date: August 31, 2012

DOI: 10.1214/EJP.v17-1928


  • Birkner, Matthias; Blath, Jochen. Measure-valued diffusions, general coalescents and population genetic inference. Trends in stochastic analysis, 329--363, London Math. Soc. Lecture Note Ser., 353, Cambridge Univ. Press, Cambridge, 2009. MR2562160
  • Birkner, Matthias; Blath, Jochen; Möhle, Martin; Steinrücken, Matthias; Tams, Johanna. A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 25--61. MR2485878
  • Blath, Jochen. Measure-valued processes, self-similarity and flickering random measures. Fractal geometry and stochastics IV, 175--196, Progr. Probab., 61, Birkhäuser Verlag, Basel, 2009. MR2762677
  • Dawson, Donald A.; Hochberg, Kenneth J. Wandering random measures in the Fleming-Viot model. Ann. Probab. 10 (1982), no. 3, 554--580. MR0659528
  • Donnelly, Peter; Kurtz, Thomas G. A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24 (1996), no. 2, 698--742. MR1404525
  • Donnelly, Peter; Kurtz, Thomas G. Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9 (1999), no. 4, 1091--1148. MR1728556
  • Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
  • Ethier, S. N.; Kurtz, Thomas G. Fleming-Viot processes in population genetics. SIAM J. Control Optim. 31 (1993), no. 2, 345--386. MR1205982
  • Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100
  • Falconer, K. J. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp. ISBN: 0-521-25694-1; 0-521-33705-4 MR0867284
  • Iscoe, I. On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 16 (1988), no. 1, 200--221. MR0920265
  • Mueller, Carl; Perkins, Edwin A. The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields 93 (1992), no. 3, 325--358. MR1180704
  • Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
  • Reimers, M. A new result on the support of the Fleming-Viot process, proved by nonstandard construction. Stochastics Stochastics Rep. 44 (1993), no. 3-4, 213--223. MR1277170
  • Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154
  • Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.