Chaotic extensions and the lent particle method for Brownian motion

Nicolas Bouleau (École des Ponts ParisTech)
Laurent Denis (University of Évry)


In previous works, we have developed a new Malliavin calculus on the Poisson space based on the lent particle formula. The aim of this work is to prove that, on the Wiener space for the standard Ornstein-Uhlenbeck structure, we also have such a formula which permits to calculate easily and intuitively the Malliavin derivative of a functional. Our approach uses chaos extensions associated to stationary processes of rotations of normal martingales.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-16

Publication Date: May 20, 2013

DOI: 10.1214/EJP.v18-1838


  • Albeverio, S.; Kondratiev, Yu. G.; Röckner, M. Analysis and geometry on configuration spaces. J. Funct. Anal. 154 (1998), no. 2, 444--500. MR1612725
  • Bouleau, Nicolas; Denis, Laurent. Energy image density property and the lent particle method for Poisson measures. J. Funct. Anal. 257 (2009), no. 4, 1144--1174. MR2535466
  • Bouleau, Nicolas; Denis, Laurent. Application of the lent particle method to Poisson-driven SDEs. Probab. Theory Related Fields 151 (2011), no. 3-4, 403--433. MR2851688
  • Bouleau, Nicolas; Hirsch, Francis. Dirichlet forms and analysis on Wiener space. de Gruyter Studies in Mathematics, 14. Walter de Gruyter & Co., Berlin, 1991. x+325 pp. ISBN: 3-11-012919-1 MR1133391
  • sc Cont R. and sc Fournie D. "Functional Itô calculus and stochastic integral representation of martingales", Annals of Probability Volume 41, Number 1 , 109-133, (2013).
  • sc Dellacherie C., Maisonneuve B. and sc Meyer P.-A. Probabilités et Potentiel Chap XVII à XXIV, Hermann 1992.
  • Dermoune, A. Distributions sur l'espace de P. Lévy et calcul stochastique. (French) [Distributions on P. Levy space and stochastic calculus] Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), no. 1, 101--119. MR1075441
  • sc Dupire B. "Functional Itô calculus", (2009).
  • Di Nunno, Giulia; Øksendal, Bernt; Proske, Frank. Malliavin calculus for Lévy processes with applications to finance. Universitext. Springer-Verlag, Berlin, 2009. xiv+413 pp. ISBN: 978-3-540-78571-2 MR2460554
  • Ma, Zhi-Ming; Röckner, Michael. Construction of diffusions on configuration spaces. Osaka J. Math. 37 (2000), no. 2, 273--314. MR1772834
  • Malliavin, Paul. Stochastic analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 313. Springer-Verlag, Berlin, 1997. xii+343 pp. ISBN: 3-540-57024-1 MR1450093
  • Nualart, David; Vives, Josep. Anticipative calculus for the Poisson process based on the Fock space. Séminaire de Probabilités, XXIV, 1988/89, 154--165, Lecture Notes in Math., 1426, Springer, Berlin, 1990. MR1071538
  • Nualart, David; Vives, Josep. Continuité absolue de la loi du maximum d'un processus continu. (French) [Absolute continuity of the law of the maximum of a continuous process] C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 7, 349--354. MR0958796
  • Privault, Nicolas. Stochastic analysis in discrete and continuous settings with normal martingales. Lecture Notes in Mathematics, 1982. Springer-Verlag, Berlin, 2009. x+310 pp. ISBN: 978-3-642-02379-8 MR2531026
  • sc Saphar, P. "Fonctions de Bessel" Encyclopae dia Universalis 1997.
  • Surgailis, D. On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 (1984), no. 2, 217--239. MR0764148
  • Wu, Li Ming. Construction de l'opérateur de Malliavin sur l'espace de Poisson. (French) [Construction of the Malliavin operator on Poisson space] Séminaire de Probabilités, XXI, 100--113, Lecture Notes in Math., 1247, Springer, Berlin, 1987. MR0941978

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.